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A numerical study of the Legendre-Galerkin method
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functions
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Abstract We conduct a numerical study of the Legendre-Galerkin method
for the evaluation of the prolate spheroidal wave functions (PSWFs) viewed
as the eigenfunctions of the prolate differential operator with boundary con-
ditions of continuity. Our experiments indicate that the minimal dimension
N of the Legendre-Galerkin matrix for the evaluation of the nth prolate with
precision ε is O (n+

√
nc), as n, c→ ∞, where c > 0 is the bandwidth param-

eter. The behavior of N , when either c or n is held constant, is also examined.
As a consequence, we obtain an upper bound on the complexity of the evalu-
ation of the prolates. We also study the condition number of the approximate
Legendre coefficients, computed as an eigenvector of the Legendre-Galerkin
matrix. We observe experimentally that for fixed precision ε, an error esti-
mate based on this condition number is O (n+ c) as n, c→ ∞. We conclude
that the Legendre-Galerkin method is accurate for fairly large values of n
and c.
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1 Introduction

1.1 Motivation

The prolate spheroidal wave functions (PSWFs) have been long studied e.g.
in relation to the Helmholtz equation in space, or as solutions to the energy
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concentration problem for bandlimited functions. More recently, they have
been used as spectral elements for the discretization for time-dependent partial
differential equations [8], and in modeling of wireless channels [14].

In this paper, we are concerned with the evaluation of the prolate spheroidal
wave functions of zero order (PSWFs) on the interval [−1, 1]. The PSWFs
with the bandwidth parameter c > 0 are the eigenfunctions of the prolate
differential operator Lc defined by the formula

Lcf(x) = −
((
1− x2

)
f ′(x)

)′
+ c2x2f(x), (1)

that are, moreover, continuous at the endpoints x = ±1. The most common
way to discretize the eigenproblem

Lcf = χf (2)

with boundary conditions of continuity is to use the Galerkin method with
the Legendre polynomials [5, 8–10, 13]. This approach amounts to computing
approximate Legendre coefficients of the PSWFs, followed by the evaluation of
the resulting Legendre series. Bouwkamp [5] obtains the Legendre coefficients
as eigenvectors of a real tridiagonal, but non-symmetric matrix. Hodge [13]
uses a real symmetric tridiagonal matrix instead, which is diagonally conju-
gated to Bouwkamp’s.

One of the main advantages of this method is its spectral convergence. Since
every prolate is the restriction of an entire function, the Legendre coefficients
of the prolate decay super-exponentially (i.e. faster than every exponential
function), see [7, Theorem 7.3].

Even though there are several publications on the subject, some important
aspects of the Legendre-Galerkin method are not well understood.

First, it has not been satisfactorily explained, how the dimension of the
discretized eigenproblem depends on the parameter c, the mode number n of
the prolate, and the required precision ε.

Second, it is not clear what precision can be obtained, especially when
the mode number n or the bandwidth parameter c is large. Conditioning of
the eigenvectors depends on the separation of the eigenvalues of the Galerkin
matrix, and little is known on this subject.

Both questions are difficult to analyze with current methods. Therefore,
we have decided to conduct numerical experiments, and then formulate con-
jectures, which may lead to rigorous proofs.

We note that there exists an analytically equivalent definition of the PSWFs
as the eigenfunctions of the prolate integral operator Pc defined on L2(−1, 1)
as follows

Pcf(x) =
1

π

1∫

−1

sin c(x− y)

x− y
f(y)dy. (3)

This description is commonly used to study analytic properties of the PSWFs
[15,16,23,24]. However, this definition is unsuitable for the numerical evalua-
tion for the following reasons:
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1. The eigenvalues of the integral equation decay super-exponentially fast, [26,
Corollary 2]. Therefore, the eigenvectors corresponding to smaller eigenval-
ues are inaccurate.

2. For large parameters c, the initial eigenvalues are close to each other [11,
Theorem 1] and, consequently, the initial eigenfunctions are ill-conditioned.

Therefore, we consider the Legendre-Galerkin method to be the best choice
for the numerical evaluation of the prolates. We note that an old approach
presented e.g. in [5] used Newton’s method to improve accuracy of the eigen-
values given their initial approximations. The current, robust approach uses a
modern eigensolver for real symmetric tridiagonal matrices.

1.2 Previous work

Even though the Legendre-Galerkin algorithm is the method of choice for the
numerical evaluation of the prolates, little is known about its overall compu-
tational complexity or accuracy, which depend on the mode number n and the
bandwidth c.

The question of the dimension of the Galerkin matrix has been studied
by J. P. Boyd in a special case when c 6 c∗(n), where c∗(n) = π

2
(n + 1

2
) is

the transition bandwidth. Boyd has verified experimentally that the dimension
Ntrunc = 2n+30 [8, equation (30)] is sufficient to guarantee double precision.
We study this case in Sec. 3.4, and obtain results consistent with Boyd’s. Boyd
explains in [8, Section 2.3] that the assumption c 6 c∗(n) prevents the first
n prolates from having uniformly small values at the endpoints x = ±1, and
is necessary when the prolates are used as a basis for a numerically stable
expansion.

Some works like [17,18] deal exclusively with the continuous eigenproblem,
e.g. the eigenvalues of the prolate differential operator with certain boundary
conditions. By contrast, in this paper we study a discrete eigenproblem, e.g. the
eigenvalues of finite Galerkin matrices. Similarly, [20] also deals mostly with the
continuous eigenproblem, with some exceptions, e.g. formula (10.3) on p. 354.
This formula sets the dimension of Galerkin matrix to N = 1.1c + n + 1000,
but without any justification. In [19, Remark 9], the dimension is assumed to
be O(n+ c), again without any justification.

In [27], Xiao et al. use a truncation of the Galerkin matrices that guarantees
only that the omitted Legendre coefficients are smaller in magnitude than a
fixed ε > 0. This does not guarantee that the prolate functions are computed
with this precision. In fact, Xiao et al. make no statement about accuracy of
the prolates computed with their approach.

By contrast, we study the smallest dimensionN = N(n, c, ε) of the Legendre-
Galerkin matrix required to compute the nth prolate with precision ε. We
determine accuracy of our approach by comparing the nth eigenvector of
the Galerkin matrix with the exact Legendre coefficients of the nth prolate,
see (33).
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1.3 Contributions

We conduct a numerical study of the Legendre-Galerkin method applied to
the eigenproblem (2) with boundary conditions of continuity addressing the
following aspects. Throughout this paper, we use the big O notation to describe
the limiting behavior as n, c→ ∞ and ε→ 0+.

Our main contributions are as follows.

1. Discretization. We observe experimentally that for a fixed ε > 0, the min-
imal dimension N of the Legendre-Galerkin matrix required to achieve
precision ε satisfies

N = O
(
n+

√
nc

)
, (4)

where c is the bandwidth parameter, and n is the mode number of the
prolate, see Section 3.1.

2. Discretization. In Section 3.4, we observe that if c = c∗(n), then

N = O
(
n+

√
n | log ε|

)
. (5)

3. Conditioning. We study the condition number of the approximate Legendre
coefficients viewed as an eigenvector of the Legendre-Galerkin matrix. In
Section 3.5, we observe experimentally that for fixed precision ε, an error
estimate based on this condition number is O (n+ c).

Two additional bounds on N are presented in Section 3.2 and Section 3.3. In
Section 3.7, we obtain from (4) the following upper bound on the operation
count L required for the evaluation of the nth prolate at M points in fixed
precision

L = O
(
(n+

√
nc)(log2 n+ log2 c) +M

)
, (6)

which is the first estimate for the overall complexity of the Legendre-Galerkin
algorithm in terms of the parameters n and c.

Using computations in extended precision, we confirm experimentally that
the error of the PSWFs evaluated by the Legendre-Galerkin method grows
slowly with n and c, and is within an order of magnitude from our error esti-
mates based on the condition number of the eigenvectors of the corresponding
Galerkin matrix, see Section 3.5.

2 Preliminaries

In this section, we review basic properties of the Legendre polynomials and
the PSWFs, and outline the Galerkin method. We also present some error
estimates for the symmetric eigenvalue problem.
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2.1 Legendre polynomials

The Legendre polynomials P0, P1, . . . , are defined by the recurrence relation
( [1], 22.7.10 )

P0(x) = 1, (7)

P1(x) = x, (8)

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) for n > 1. (9)

It follows from the definition, that Pn is an even function when n is even, and
an odd function when n is odd. The Legendre polynomial Pn is a solution of
the differential equation ( [1], 22.6.13 )

−
((
1− x2

)
f ′
)′

= n(n+ 1)f. (10)

The Legendre polynomials are orthogonal on the interval [−1, 1], but not or-
thonormal. It is convenient to use the normalized Legendre polynomials ( [1],
22.2.10 )

P̃n :=
√
n+ 1

2
Pn for n > 0. (11)

The normalized Legendre polynomials
{
P̃n

}

n>0

form an orthonormal basis of

the Lebesgue space L2(−1, 1), ( [4], Theorem 4.8.5).

2.2 Prolate spheroidal wave functions

For a fixed c > 0, we are concerned with real-valued solutions w = w(x) of the
prolate differential equation

Lcw − χw = −
(
(1− x2)w′

)′
+
(
c2x2 − χ

)
w = 0 (12)

We only consider solutions that are continuous at x = ±1. It is well-known
( [10], Section 3.1) that there exists an increasing sequence of distinct real
numbers,

0 < χ0(c) < χ1(c) < χ2(c) < . . . , (13)

such that for χ = χn(c) equation (12) has, up to a multiplicative constant, a
unique solution ψn(x; c) that is continuous at x = ±1. The numbers χ0, χ1, . . .

are thus the eigenvalues of the boundary value problem given by (12) with the
boundary condition of continuity. The corresponding eigenfunctions ψn(x) =
ψn(x; c) are called the prolate spheroidal wave functions (PSWFs) of mode
number n and order 0. Following [7], we call the positive number c the band-
width parameter of the PSWFs ψn(x; c).

It follows from the symmetry of the prolate differential equation that ψn

is an even function when n is even, and an odd function when n is odd.
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2.3 Legendre-Galerkin method

The Legendre-Galerkin method (see [6, Section 3.1]) uses the basis of the nor-

malized Legendre polynomials P̃0, P̃1, . . . to discretize the eigenvalue problem
for the differential operator Lc with the boundary conditions of continuity.
The Galerkin matrix A for this problem is given by

Ai,j =
〈
LcP̃j , P̃i

〉
i, j = 0, 1, . . . . (14)

Combining (9), (10) and (11) (see [8, Section 2]), one can show that the only
nonzero elements of the matrix A are given by

Ai,i = i(i+ 1) + c2
2i(i+ 1)− 1

(2i− 1)(2i+ 3)
i = 0, 1, . . . , (15)

Ai,i−2 = Ai−2,i = c2
i(i− 1)

(2i− 1)
√

(2i− 3)(2i+ 1)
i = 2, 3, . . . . (16)

Thus eigenproblem (2) is reduced to a matrix eigenvalue problem of the form

Aa = χa, (17)

where a = {aj(n, c)}j>0 are the coefficients of the PSWF ψn(x; c) with the
mode number n and bandwidth parameter c with respect to the normalized
Legendre polynomials

ψn(x; c) =
∑

j>0

aj(n, c) P̃j(x). (18)

We notice that nonzero entries of A appear only on the main diagonal, the
second subdiagonal, and the second superdiagonal. Therefore (17) decouples
into two tridiagonal eigenproblems, see also [8, Section 2]. If n is even, the
first N even Legendre coefficients of ψn are approximated by the eigenvector
corresponding to the

(
n
2
+ 1

)
st smallest eigenvalue of the N ×N matrix

Ae
N := {A2i,2j}i,j=0,...,N−1

. (19)

If n is odd, the first N odd Legendre coefficients of ψn are approximated by
the eigenvector corresponding to the

(
n+1

2

)
th eigenvalue of the N ×N matrix

Ao
N := {A2i+1,2j+1}i,j=0,...,N−1

. (20)

In other words, approximate Legendre coefficients ã = ã(n, c,N) of ψn are

constructed from the corresponding eigenvectors b = (b1, b2, . . . , bN )
T

of the
matrices (19) and (20), respectively, interleaved with zeros and zero-padded
to sequences in ℓ2(N0), i.e.

ã =

{
(b1, 0, b2, 0, . . . , bN , 0, 0, 0, 0, . . .)

T
for n even,

(0, b1, 0, b2, . . . , 0, bN , 0, 0, 0, . . .)
T

for n odd.
(21)

Both matrices Ae
N and Ao

N are real and symmetric. They are also positive
definite if c > 0. This follows from (1) and (14) by integration by parts.
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operation count

all eigenvalues O (N logN)

nth eigenvector O (N)

evaluation of the Legendre series O
(

N log2N +M
)

Table 1 Operation count of the evaluation of ψn at M nodes.

2.4 Complexity of the Legendre-Galerkin algorithm

In this section, we derive the operation count of the Legendre-Galerkin algo-
rithm for the numerical evaluation of the PSWF ψn described in Section 2.3.

If n is even we compute all eigenvalues of the matrix Ae
N , see (19), if n is

odd we compute all eigenvalues of the matrix Ao
N , see (20). Since both matrices

are symmetric and tridiagonal, the divide-and-conquer algorithm [12] finds the
eigenvalues in O (N logN) flops. We note that this operation count is sufficient
to compute the eigenvalues with the absolute precision roughly equal to the
machine epsilon times the norm of the matrix. However, if needed, the eigen-
values and eigenvectors of tridiagonal symmetric positive definite matrices Ae

N

and Ao
N can be computed to high relative precision using more sophisticated

methods [2].
Then, for even n, we find an eigenvector corresponding to the

(
n
2
+ 1

)
st

smallest eigenvalue of Ae. For odd n, we find an eigenvector corresponding to
the

(
n+1

2

)
th smallest eigenvalue of Ao. The convergence rate and the complex-

ity of this step depends on the distribution of the eigenvalues. In our case, the
eigenvalues of both matrices appear experimentally to be separated by a fixed
constant, see Section 3.6. Consequently, inverse iterations with shifts converge
to precision ε in O (| log ε|) iterations, which results in O (N) operations per
eigenvector.

As described in Section 2.3, the entries of the eigenvector approximate
the first N Legendre coefficients in (18). At M arguments, the N -th partial
sum of the Legendre series can be evaluated in O (MN) flops. However, if the
number of arguments M is large, the evaluation of the Legendre series can be
accelerated by the fast polynomial transform [21] to O

(
N log2N +M

)
flops.

Thus in fixed precision, the resulting total operation count L satisfies

L = O
(
N log2N +M

)
. (22)

The operation count of the evaluation of ψn at M nodes is summarized in
Table 1.

2.5 Perturbation of Eigenvectors

Let A be an N × N matrix with the eigenvalues λ1, . . . , λN . For z ∈ C, we
denote the distance from z to all eigenvalues of A different from a fixed eigen-
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value λ by

gapA(z, λ) := min
λk 6=λ

|z − λk| . (23)

Let A be a real symmetric matrix with a simple eigenvalue λ, and let u be
a corresponding normalized eigenvector. The condition number of the eigen-
vector u measures the rate of change of the eigenvector under infinitesimally
small perturbations of the matrix. Following [22, Section 3.3.2], we define the
condition number of u with respect to the matrix operator norm as

cond(u) := max
‖E‖=1

lim
t→0

1

t
‖u(A+ tE)− u‖ , (24)

where the maximum is taken over all real N ×N matrices E, and u(A+ tE) is
an eigenvector of A+ tE chosen so that u(A+ tE) is a continuous function of
t defined in a neighborhood of t = 0 with u(0) = u. The following expression
for the absolute condition number is proved in [22, (3.45)]

cond(u) =
1

gapA(λ, λ)
. (25)

The condition number is used to estimate forward errors εf occurring in the
computation of u as follows,

εf ≈ cond(u) εb. (26)

The backward error εb is typically equal to the matrix norm times the precision
of the computations ε,

εb ≈ ε ‖A‖ . (27)

Other possible estimates for the backward error include a slowly growing func-
tion of the matrix dimensions. Typically, the backward error grows linearly,
quadratically, or cubically with the dimension of the matrix, see [25, p. 106].
Combining (25), (26) and (27), we arrive at the following error estimate of the
error for u

εf ≈ ε
‖A‖

gapA(λ, λ)
. (28)

If A is Hermitian with non-negative eigenvalues, then

εf ≈ ε
λmax(A)

gapA(λ, λ)
, (29)

where λmax(A) is the largest eigenvalue of A.
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3 Numerical experiments

The results presented below are selected from a larger set of numerical sim-
ulations covering wide ranges of parameters. However, our conclusions are
consistent with experiments that we do not include for the sake of brevity.
Thus our conclusions are based on a consistent behavior of the experimental
curves for all parameters, and the asymptotic regime has been reached in our
simulations.

We are interested in how the minimal dimension N = N(n, c, ε) of the
Legendre-Galerkin matrix required to achieve precision ε depends on the pro-
late mode number n and the bandwidth parameter c. In particular, we inves-
tigate the limiting behavior as n, c→ ∞ and ε→ 0+.

We study properties of the matrices Ae
N and Ao

N defined by (19) and (20),
respectively. For the sake of brevity, we include the results for Ae

N only. Thus
Figures 1(a), 3(a), 7(a), 8(a) and 10(a) show the curves restricted to the even
values of n.

Our experiments have been done in MATLAB R2012a. Some computa-
tions in Section 3.5 have been done in extended precision using the Multiple
Precision Toolbox for MATLAB created by Ben Barrowes [3].

3.1 Dimension of the Legendre-Galerkin matrix for fixed precision

We assume that the prolates are normalized in L2(−1, 1), so that their normal-
ized Legendre coefficients a = {aj(n, c)}j>0 in (18) are unit vectors in ℓ2(N0).
With our normalization, the absoute and relative errors coincide

‖a− ã‖
‖a‖ = ‖a− ã‖. (30)

We also normalize approximate Legendre coefficients, so that ‖ã‖ = 1.
We use Parseval’s identity to express the L2-norm of the kth remainder of

the series (18) in terms of the coefficients aj(n, c), k = 0, 1, . . .,

rk(n, c) :=

∥∥∥∥∥∥

∑

j>k+1

aj(n, c) P̃j

∥∥∥∥∥∥
2

=




∑

j>k+1

|aj(n, c)|2



1

2

. (31)

For every ε > 0, we denote by d(n, c, ε) the smallest index k such that
r2k−1(n, c) 6 ε,

d(n, c, ε) = min {k : r2k−1(n, c) 6 ε} . (32)

Thus d measures the rate of decay of the Legendre coefficients of ψn.
As explained in Section 2.3, approximate coefficients ã(n, c,M) are com-

puted as the entries of an eigenvector corresponding to the
(
n
2
+ 1

)
st or

(
n+1

2

)
th

smallest eigenvalue of Ae
M or Ao

M , respectively, interleaved with zeros and
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Fig. 1 The minimal dimension N(n, c, ε) of the Legendre-Galerkin matrix required to com-
pute the nth prolate with precision ε = 10−8.

zero-padded in the remaining entries. We denote by N(n, c, ε) the smallest di-
mension of the Legendre-Galerkin matrix required to compute the nth prolate
with precision ε,

N(n, c, ε) = min {M : ‖a(n, c)− ã(n, c,M)‖ 6 ε} , (33)

We sometimes write d(n, c), N(n, c) when ε is fixed.

According to (21), the only possibly nonzero entries of ã(n, c,M) = {ãj}j>0

are ã0, ã2, . . . , ã2M−2 if n is even, or ã1, ã3, . . . , ã2M−1 if n is odd. Thus ãj = 0
for j > 2M − 1, and r2M−1 6 ‖a − ã‖. If M = N(n, c, ε), then r2M−1 6

‖a− ã‖ 6 ε. Consequently,

d(n, c, ε) 6 N(n, c, ε). (34)

In our experiments, we have observed that the two quantities are very close to
each other. In the studied examples, the minimal dimension N(n, c, ε) of the
Legendre-Galerkin matrix exceeds d(n, c, ε) by at most 1. We conjecture that

N(n, c, ε) 6 d(n, c, ε) +O (| log ε|) . (35)

Figure 1 shows the quantity N(n, c, ε) for ε = 10−8, the corresponding plot for
d(n, c) is visually identical, and is not included. Figure 1(a) shows N(n, c, ε)
as a function of n, while Figure 1(b) shows as a function of

√
c. We notice that

all curves in Figure 1(b) asymptote to linear functions of
√
c.

On the basis of our experiments, we formulate the following estimate, which
is one of our main contributions (4).

Observation 1 For a fixed ε > 0,

N(n, c, ε) = O
(
n+

√
nc

)
. (36)
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Fig. 2 The quotient F (n, c) =
N(n,c,ε)
√
n+1

for ε = 10−8.

To support our claim, we introduce the function

F (n, c, ε) =
N(n, c, ε)√
n+ 1

. (37)

For c = 0, the Legendre-Galerkin matrix is a diagonal, see (16), and all
Galerkin eigenvectors are the exact Legendre coefficients of the respective
eigenfunctions. Thus the minimal dimension to compute the nth eigenvector
after the decoupling is equal to

⌈
n+1

2

⌉
, i.e.

N(n, 0) =

⌈
n+ 1

2

⌉
. (38)

Consequently,

F (n, 0) =
N(n, 0)√
n+ 1

= O
(√
n
)
. (39)

Figure 2 shows F (n, c) as a function of
√
c for n = 0, 32, 64, 128. We observe

that

F (0, c) = O
(√
c
)
. (40)

Moreover, for a fixed argument
√
c, the slopes of the curves decrease when n

grows, which implies that

F (n, c)− F (n, 0) 6 F (0, c)− F (0, 0). (41)

Combining (39), (40) and (41), we deduce that

F (n, c) = O
(√
n+

√
c
)
. (42)

Now (36) follows from (37) and (42).
We note that this discussion reflects a general pattern discovered experi-

mentally, but leaves out discretization effects. Due to a discrete nature of the
quantities N and F , we expect that some exceptions to the statement that the
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Fig. 3 The minimal dimension N(n, c, ε) of the Legendre-Galerkin matrix for c = 64.

slopes in Figure 2 decrease with n, especially for small values of c. A rigorous
proof of (36) should take that into account.

The dimension of the Galerkin matrix determines the operation count of
the Galerkin method. Substituting (36) into (22), we obtain the following
upper bound on the operation count L required for the evaluation of the nth
prolate at M points in fixed precision

L = O
(
(n+

√
nc)(log2 n+ log2 c) +M

)
. (43)

3.2 Dimension of the Legendre-Galerkin matrix for a fixed bandwidth

Figure 3 shows the quantity N(n, c, ε) for c = 64. Figure 3(a) shows N(n, c, ε)
as a function of n, while Figure 3(b) shows N(n, c, ε) as a function of ε. We
notice that all curves in Figure 3(a) asymptote to linear functions of n. On
the basis of our experiments, we formulate the following estimate.

Observation 2 For a fixed c > 0,

N(n, c, ε) = O (n+ | log ε|) . (44)

Our justification of (44) is similar to the one used for (36). We observe
in Figure 3(b) that the slopes of N(n, c, ε) viewed as a function of ε decrease
when n grows. Consequently,

N(n, c, ε)−N(n, c, 0.1) 6 N(0, c, ε)−N(0, c, 0.1). (45)

We also observe in Figure 3(b) that

N(0, c, ε) = O (| log ε|) . (46)

We observe in Figure 3(a) that

N(n, c, 0.1) = O (n) . (47)

Combining (45), (46), (47), we obtain (44).
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Fig. 4 The minimal dimension N(n, c, ε) of the Legendre-Galerkin matrix for n = 64.
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Fig. 5 The quantity N(n, c, ε)/| log ε| for n = 64.

3.3 Dimension of the Legendre-Galerkin matrix for a fixed mode number

Figure 4 shows the quantity N(n, c, ε) for n = 64. Figure 4(a) shows N(n, c, ε)
as a function of

√
c, while Figure 4(b) shows N(n, c, ε) as a function of ε. We

notice that all curves in Figure 4(a) asymptote to linear functions of
√
c. On

the basis of our experiments, we formulate the following estimate.

Observation 3 For a fixed n,

N(n, c, ε) = O
(√
c | log ε|

)
. (48)

We observe in Figure 5 that

N(n, c, ε)

| log ε| = O
(√
c
)
, (49)

which implies (48).
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Fig. 7 The quotient F (n, c∗(n), ε) =
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√
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.

3.4 Dimension of the Legendre-Galerkin matrix for c = c∗(n)

The behavior of the prolates as finite elements depends crucially on the so
called transition bandwidth defined as

c∗(n) :=
π
2

(
n+ 1

2

)
, (50)

where n is the largest mode number. The assumption c 6 c∗(n), see [7, Theo-
rem 5.3], is necessary for the numerical stability of the prolate expansion.

We study the minimal dimension of the Galerkin matrix N(n, c∗(n), ε)
needed to compute the nth PSWF with the bandwidth parameter c = c∗(n)
with precision ε. Figure 6 shows the quantity N(n, c∗(n), ε). Figure 6(a) shows
N(n, c∗(n), ε) as a function of n, while Figure 6(b) shows N(n, c∗(n), ε) as a
function of ε. On the basis of our experiments, we formulate the following
estimate.

Observation 4

N(n, c∗(n), ε) = O
(
n+

√
n | log ε|

)
. (51)
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Our justification of (51) is analogous to the one used for (36). Figure 7(a)
shows the quotients

F (n, c∗(n), ε) =
N(n, c∗(n), ε)√

n+ 1
(52)

as functions of
√
n for several values of ε. We observe that for a fixed argument√

n, the slopes of the curves decrease when | log ε| increases. From Figure 7(b),
we infer that

F (0, c∗(0), ε) = O(| log ε|), (53)

and thus (51) holds.
A brief comment about (53) is in order. We have observed experimentally

(35), in particular

F (0, c∗(0), ε) = N(0, c∗(0), ε) 6 d(0, c∗(0), ε) +O(| log ε|). (54)

Therefore (53) follows from

d(0, c∗(0), ε) = O(| log ε|). (55)

In turn, (55) follows from exponential decay of the Legendre coefficients of the
prolate ψ0(x, c∗(0)), see [7, Theorem 7.3].

We note that (51) is consistent with the dimension Ntrunc = 2n + 30 of
the Galerkin matrix (before decoupling) used in [8, equation (30)] in double
precision.

3.5 Conditioning of the Legendre coefficients in fixed precision

In this section, we study the accuracy of the approximations of the Legendre
coefficients in (18) by the eigenvectors of the Legendre-Galerkin matrix. For n
even, the even Legendre coefficients of ψn are approximated by an eigenvector
corresponding to the

(
n
2
+ 1

)
st smallest eigenvalue of the matrix Ae

N defined
in (19). For an odd n, the odd Legendre coefficients of ψn are approximated by
an eigenvector corresponding to the

(
n+1

2

)
th smallest eigenvalue of the matrix

Ao
N defined in (20).
Backward errors given by (27) result from rounding. They have irregular

behavior, so both backward and forward errors are difficult to investigate ex-
perimentally. Therefore, we use estimate (29) for the forward error, and study
experimentally the forward errors together with their analytic estimates.

According to (29), the forward error εf of the normalized eigenvector un
can be estimated as follows

εf ≈ ε0
λmax(B)

gapB(χn, χn)
, (56)

where ε0 is the machine precision, λmax(B) is the maximal eigenvalue of B,
χn is the eigenvalue of un, and B = Ae

N or B = Ao
N depending on whether n
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Fig. 8 The function G(n, c, ε) for ε = 2−52.
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4
for ε = 2−52.

is even or odd. The entries and the dimension N of the matrix B depend on
the parameters n and c, and the precision ε chosen in the algorithm. For the
sake of readability, we do not show this dependence.

Let G denote the function

G(n, c, ε) =
λmax(B)

gapB(χn, χn)
, (57)

so that the approximate error εf of the normalized eigenvector un satisfies

εf ≈ ε0G(n, c, ε0). (58)

Figure 8 shows the quantityG(n, c, ε) for ε = 2−52. As a function of c,G(n, c, ε)
has a local maximum located close to the transition bandwidth c = c∗(n).
Based on our experiments, we make the following claim.

Observation 5 For a fixed ε > 0,

G(n, c, ε) = O (n+ c) . (59)

To justify this claim, we consider the function G̃(n, c, ε) := G(n, c, ε) − c
4
,

see Figure 9. As a function of c, G̃(n, c, ε) is unimodal, and has a maximum
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Fig. 10 The error and the estimated error.

value, which grows at most linearly with n. Thus G̃(n, c, ε) = O (n), and (59)
follows. It is noteworthy that the growth in c is described by the function c

4

independently of the precision ε.

Figure 10 shows the errors of the normalized Legendre coefficients of pro-
lates. We also show estimated errors obtained via (56) with ε0 = 2−52.

In these experiments, we use the Galerkin matrix of dimensionN(n, c, 2−52),
so that the truncation error is equal to the machine epsilon in double preci-
sion. We notice that our error estimates based on the condition number of
the eigenvectors of the corresponding Galerkin matrix are within an order of
magnitude from the actual errors. We note that our error estimates are ap-
proximations of the errors, but they are not necessarily upper bounds. Thus
we do not expect the computed errors to be majorized by the estimated ones.

We have also conducted experiments on conditioning of the eigenvectors
of the Galerkin matrices using the perturbation bound for scaled diagonally
dominant matrices given in [2, Theorem 6]. However, we have not observed
any improvement over (59).

3.6 Distribution of the eigenvalues

Figure 11 shows the minimal gaps between consecutive eigenvalues of the
Galerkin matrices. For the matrices Ae

N , the gaps between the consecutive
eigenvalues equal at least 6, for the matrices Ao

N , the gaps are at least 10.
The separation of the eigenvalues of the Galerkin matrices affects both com-
plexity and accuracy of the Legendre-Galerkin method, see Section 2.4 and
Section 3.5, respectively.
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Fig. 11 The minimal gaps between consecutive eigenvalues of the Galerkin matrices.

3.7 Summary of the experiments

We study the minimal dimension N = N(n, c, ε) of the Legendre-Galerkin
matrix required to compute the nth prolate of bandwidth c with precision ε.
The operation count required for the evaluation of the nth prolate atM points
in fixed precision ε is denoted by L. The function G defined by (57) is used to
estimate the error of an appropriate eigenvector of the Galerkin matrix.

1. For a fixed ε > 0

N(n, c, ε) = O
(
n+

√
nc

)
. (60)

2. For a fixed ε > 0

L(n, c, ε,M) = O
(
(n+

√
nc)(log2 n+ log2 c) +M

)
. (61)

3. For a fixed c > 0

N(n, c, ε) = O (n+ | log ε|) . (62)

4. For a fixed n

N(n, c, ε) = O
(√
c | log ε|

)
. (63)

5. If c = c∗(n)

N(n, c∗(n), ε) = O
(
n+

√
n | log ε|

)
. (64)

6. For a fixed ε > 0

G(n, c, ε) = O (n+ c) . (65)

7. The gaps between the consecutive eigenvalues of the Galerkin matrices are
uniformly bounded from below.

2. On p. 18, we explain that our conclusions are based on a consistent
behavior of the experimental curves for all parameters, and the asymptotic
regime has been reached in our simulations.
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4 Conclusions

Observations 1, 2 and 3 combined lead to a conjectural upper bound on the
minimal dimension of the Legendre-Galerkin matrix required to achieve pre-
cision ε

N(n, c, ε) = O
(
n+

√
nc+

√
c | log ε|

)
. (66)

However, this estimate is fairly complex, and our numerical evidence for this
conjecture is inconclusive.

It is also interesting to notice that this dimension N(n, c, ε) is very close to
the minimal length d(n, c, ε) of the Legendre series needed to approximate ψn

with precision ε. This means that the Legendre-Galerkin method efficiently
computes very accurate approximations to the Legendre coefficients. The be-
havior of the difference N(n, c, ε)− d(n, c, ε) requires further studies.

In Subsection 3.5, we observe that the error estimate based on the condi-
tion number of the eigenvector containing the Legendre coefficients of the nth
prolate is O(n + c) as n, c→ ∞. Using computations in extended precision,
we observe that the errors of the computed PSWFs grow in a similar way.
This loss of precision is gradual and fairly moderate, so the Legendre-Galerkin
method is accurate for reasonably large values of n and c.

In Subsection 3.6, we observe that the consecutive eigenvalues of the Galerkin
matrices are separated from each other by a fixed constant. We are not aware
of a rigorous proof of this fact.

While our analysis of the experiments is not itself rigorous, it reveals the
underlying structure of the studied quantities, and may help formulate rigorous
proofs.
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