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Summary. Sound localization in sagittal planes, SPs, including front-back discrim-
ination, relies on spectral cues resulting from the �ltering of incoming sounds by the
torso, head and pinna. While acoustic spectral features are well-described by head-
related transfer functions, HRTFs, models for SP localization performance have re-
ceived little attention. In this article, a model predicting SP localization performance
of human listeners is described. Listener-speci�c calibrations are provided for 17 lis-
teners as a basis to predict localization performance in various applications. In order
to demonstrate the potential of this listener-speci�c model approach, predictions for
three applications are provided, namely, the evaluation of non-individualized HRTFs
for binaural recordings, the assessment of the quality of spatial cues for the design of
hearing-assist devices and the estimation and improvement of the perceived direction
of phantom sources in surround-sound systems.

1 Sound Localization in Sagittal Planes

1.1 Salient Cues

Human normal-hearing, NH, listeners are able to localize sounds in space in
terms of assigning direction and distance to the perceived auditory image
[26]. Multiple mechanisms are used to estimate sound-source direction in the
three-dimensional space. While interaural di�erences in time and intensity
are important for sound localization in the lateral dimension, left/right, [53],
monaural spectral cues are assumed to be the most salient cues for sound
localization in the sagittal planes, SPs, [54, 27]. SPs are planes parallel to the
median plane and include points of similar interaural time di�erences for a
given distance. The monaural spectral cues are essential for the perception of
the source elevation within a hemi�eld [2, 22, 24] and for front-back discrim-
ination of the perceived auditory event [56, 46]. Note that also the binaural
pinna disparities [43], namely, interaural spectral di�erences, might contribute
to SP localization [27].
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The mechanisms underlying the perception of lateral displacement are the
main topic of other chapters. This chapter focuses on the remaining direc-
tional dimension, namely, the one along SPs. Because interaural cues and
monaural spectral cues are thought to be processed largely independently of
each other [27], the interaural-polar coordinate system is often used to describe
their respective contributions in the two dimensions. In the interaural-polar
coordinate system the direction of a sound source is described with the lateral
angle, φ ∈ [−90◦, 90◦], and the polar angle, θ ∈ [−90◦, 270◦) � see Fig. 1, left
panel. SP localization refers to the listener's assignment of the polar angle for
a given lateral angle and distance of the sound source.

Fig. 1. Left: interaural-polar coordinate system. Right: HRTF magnitude spectra
of a listener as a function of the polar angle in the median SP � left ear of NH58

Although spectral cues are processed monaurally, the information from both
ears a�ects the perceived location in most cases [39]. The ipsilateral ear, name-
ly, the one closer to the source, dominates and its relative contribution increas-
es monotonically with increasing lateral angle [12]. If the lateral angle exceeds
about 60◦, the contribution of the contralateral ear becomes negligible. Thus,
even for localization in the SPs, the lateral source position, mostly depending
on the broadband binaural cues [27], must be known in order to determine
the binaural weighting of the monaural spectral cues.

The nature of the spectral features important for sound localization is
still subject of investigations. Due to the physical dimensions, the pinna plays
a larger role for higher frequencies [36] and the torso for lower frequencies
[1]. Some psychoacoustic studies postulated that macroscopic patterns of the
spectral features are important rather than �ne spectral details [2, 22, 24, 44,
28, 23, 16, 10]. On the other hand, other studies postulated that SP sound
localization is possibly mediated by means of only a few local spectral features
[52, 37, 17, 56]. Despite a common agreement, according to which the amount
of the spectral features can be reduced without substantial reduction of the
localization performance, the perceptual relevance of particular features has
not been fully clari�ed yet.



Localization Performance in Spatial Audio 3

1.2 Head-related Transfer Functions

The e�ect of the acoustic �ltering of torso, head and pinna can be described
in terms of a linear time-invariant system by the so-called head-related trans-
fer functions, HRTFs, [4, 45, 38]. The right panel of Fig. 1 shows the HRTF
magnitude spectra of an exemplary listener, NH58, left ear1, along the median
SP.

HRTFs depend on the individual geometry of the listener and thus listener-
speci�c HRTFs are required to achieve accurate localization performance for
binaural synthesis [6, 35]. Usually, HRTFs are measured in an anechoic cham-
ber by determining the acoustic response characteristics between loudspeakers
at various directions and microphones inserted into the ear canals. Current-
ly, much e�ort is put also into the development of non-contact measurement
methods for capturing HRTFs like numerical calculation of HRTFs from op-
tically scanned geometry [20, 21] and on customization of HRTFs basing on
psychoacoustic tests [34, 16, 46].

Measured HRTFs contain both direction-dependent and direction-inde-
pendent features and can be thought of as a series of two acoustic �lters. The
direction-independent �lter, represented by the common transfer function,
CTF, can be calculated from an HRTF set comprising many directions [34]
by averaging the log-amplitude spectra of all available HRTFs of a listener's
ear. The phase spectrum of the CTF is the minimum phase corresponding to
the amplitude spectrum of the CTF.

In the current study, the topic of interest is the directional aspect. Thus,
the directional features are considered, as represented by the directional trans-
fer functions, DTFs. The DTF for a particular direction is calculated by �lter-
ing the corresponding HRTF with the inverse CTF. The CTF usually exhibits
a low-pass �lter characteristic because the higher frequencies are attenuated
for many directions due to the head and pinna shadow � see Fig. 2, left panel.

1 These and all other HRTFs are from http://www.kfs.oeaw.ac.at/hrtf

Fig. 2. Left: spatial variation of HRTFs around CTF for listener NH58, left ear.
Right: corresponding DTFs, i.e. HRTFs with CTF removed. Solid line: spatial av-
erage of transfer function. Grey area: ± 1 standard deviation
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Compared to HRTFs, DTFs usually pronounce frequencies and thus spectral
features above 4 kHz � see Fig. 2, right panel. DTFs are commonly used to
investigate the nature of spectral cues in SP localization experiments with
virtual sources [34, 10, 30].

In the following, the proposed model is described in Sect. 2 and the result-
s of its evaluation are presented in Sect. 3, based on recent virtual-acoustics
studies that used listener-speci�c HRTFs. In Sect. 4, the proposed model is ap-
plied to predict localization performance for di�erent aspects of spatial-audio
applications that involve spectral localization cues. In particular, a focus is put
on the evaluation of non-individualized binaural recordings, the assessment of
the quality of spatial cues for the design of hearing-assist devices, namely, in-
the-ear vs. behind-the-ear microphones and the estimation and improvement
of the perceived direction of phantom sources in surround-sound systems,
namely, 5.1 vs. 9.1 vs. 10.2 surround. Finally, Sect. 5 concludes with a discus-
sion of the potential of the model for both evaluating audio applications and
improving the understanding of human sound-localization mechanisms.

2 Models of Sagittal-plane Localization

This section considers existing models aiming at predicting listener's polar
response angle to the incoming sound. These models can help to explain psy-
choacoustic phenomena or to assess the spatial quality of audio systems while
avoiding the running of costly and time-consuming localization experiments.

In general, machine-learning approaches can be used to predict localization
performance. Arti�cial neural networks, ANNs, have been shown to achieve
rather accurate predictions when trained with large datasets of a single lis-
tener [19]. However, predictions for a larger subpopulation of human listeners
would have required much more e�ort. Also, the interpretation of the ANN
parameters is not straight forward. It is di�cult to generalize the �ndings
obtained with an ANN-based model to other signals, persons and conditions
and thus to better understand the mechanisms underlying spatial hearing.

Hence, the focus is laid on a functional model where model parameters
should correspond to physiological and/or psychophysical localization param-
eters. Until now, a functional model considering both spectral and temporal
modulations exists only as a general concept [50]. Note that in order to address
a particular research question, models dealing with speci�c types of modula-
tions have been designed. For example, models for narrow-band sounds [37]
were provided in order to explain the well-known e�ect of directional band-
s [4]. In order to achieve a su�ciently good prediction as an e�ect of the
modi�cation of the spectral cues, it is assumed that the incoming sound is
a stationary broadband signal, explicitly disregarding spectral and temporal
modulations.

Note that localization models driven by various signal-processing ap-
proaches have also been developed [3, 32, 33]. These models are based on
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general principles of biological auditory systems, they do not, however, at-
tempt to predict human-listener performance � their outcome shows rather
the potential of the signal-processing algorithms involved.

In the following, previous developments on modeling SP localization per-
formance are reviewed and a functional model predicting sound localization
performance in arbitrary SPs for broadband sounds is proposed. The mod-
el is designed to retrieve psychophysical localization performance parameters
and can be directly used as a tool to assess localization performance in vari-
ous applications. An implementation of the model is provided in the auditory
modeling toolbox, AMT, as the baumgartner2013 model [47].

2.1 Template-based Comparison

A common property of existing sound localization models based on spectral
cues is that they compare an internal representation of the incoming sound
with a template [55, 13, 24] � see Fig. 3. The internal template is assumed
to be created by means of learning the correspondence between the spectral
features and direction of an acoustic event [14, 49], based on feedback from
other modalities. The localization performance is predicted by assuming that
in the sound localization task, the comparison yields a distance metric that
corresponds to the polar response angle of the listener. Thus, template-based
models include a stage modeling the peripheral processing of the auditory
system applied to both the template and incoming sound and a stage modeling
the comparison process in the brain.

Peripheral
Processing

Comparison
Process

Internal
Template

Distance
Metric

Response
Angle

Sound Internal

Representation

Learning
Process

1

Fig. 3. General structure of a template-based comparison model for predicting
localization in SPs

Peripheral processing

The peripheral processing stage is aimed at modeling the e�ect of human
physiology while focusing on directional cues. The e�ect of the torso, head
and outer ear are considered by �ltering the incoming sound by an HRTF
or a DTF. The e�ect of ear canal, middle ear and cochlear �ltering can be
considered by various model approximations. In the early HRTF-based local-
ization models, a parabolic-shaped �lter bank was applied [55]. Later, a �lter
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bank averaging magnitude bins of the discrete Fourier transform of the in-
coming sound was used [24]. Both �lter banks, while being computationally
e�cient, were drastically simplifying the auditory peripheral processing. The
Gammatone, GT, �lter bank [40] is a more physiology-related linear model
of auditory �lters and has been used in localization models [13]. A model
accounting for the nonlinear e�ect of the cochlear compression is the dual-
resonance nonlinear, DRNL, �lter bank [25]. A DRNL �lter consists of both
a linear and a non-linear processing chain and is implemented by cascading
GT �lters and Butterworth low-pass �lters, respectively. Another non-linear
model uses a single main processing chain and accounts for the time-varying
e�ects of the medial-oliviocochlear re�ex [57]. All those models account for the
contribution of outer hair cells to a di�erent degree and can be used to model
the movements of the basilar membrane at a particular frequency. They are
implemented in the AMT [47]. In the localization model proposed in this sec-
tion, the GT �lter bank is applied with concentration on applications where
the absolute sound level plays a minor role.

The �lter bank produces a signal for each center frequency and only the
relevant frequency bands are considered in the model. Existing models used
frequency bands with constant relative bandwidth on a logarithmic frequency
scale [55, 24]. In the model proposed in this section, the frequency spacing of
the bands corresponds to one equivalent rectangular bandwidth, ERB, [9]. The
lowest frequency is 0.7 kHz, corresponding to the minimum frequency thought
to be a�ected by torso re�ections [1]. The highest frequency considered in the
model depends on the bandwidth of the incoming sound and is maximally
18 kHz, approximating the upper frequency limit of human hearing.

Further in the auditory system, the movements of the basilar membrane
at each frequency band are translated into neural spikes by the inner hair
cells, IHCs. An accurate IHC model has not been considered yet and does not
seem to be vital for SP localization. Thus, di�erent researches used di�erent
approximations. In this model, the IHC is modeled as half-wave recti�cation
followed by a second-order Butterworth low-pass with a cut-o� frequency of
1 kHz [8]. Since the temporal e�ects of SP localization are not considered
yet, the output of each band is simply temporally averaged in terms of RMS
amplitude, resulting in the internal representation of the sound. The same
internal representation and, thus, peripheral processing, is assumed for the
template.

Comparison stage

In the comparison stage, the internal representation of the incoming sound is
compared with the internal template. Each entry of the template is selected
by a polar angle denoted as template angle. A distance metric is calculated
as a function of the template angle and can be interpreted as a potential
descriptor for the response of the listener.
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An early modeling approach proposed to compare the spectral derivatives
of various orders in terms of a band-wise subtraction of the derivatives and
then averaging over the bands [55]. The comparison of the �rst-order deriva-
tive corresponds to the assumption that the overall sound intensity does not
contribute to the localization process. In the comparison of the second-order
derivatives, the di�erences in spectral tilt between the sound and the template
do not contribute. Note that the plausibility of these comparison methods had
not been investigated at that time. As another approach, Pearson's correla-
tion has been proposed to evaluate the similarity between the sound and the
template [37, 13]. Later, the inter-spectral di�erences, ISDs, namely, the dif-
ferences between the internal representations of the incoming sound and the
template calculated for each template angle and frequency band, were used
[34] to show a correspondence between the template angle yielding small-
est spectral variance and the actual response of human listeners. All these
comparison approaches were tested in [24] who, distinguishing zeroth-, �rst-
and second-order derivatives of the internal representations, found that the
standard deviation of ISDs best described their results. This con�guration cor-
responds to an average of the �rst-order derivative from [55], which is robust
against changes in the overall level in the comparison process.

The model proposed in this study also relies on ISDs calculated for a tem-
plate angle and for each frequency band � see Fig. 4, left panel. Then, the
spectral standard deviations of ISDs are calculated for all available template
angles � see Fig. 4, right panel. For band-limited sounds, the internal repre-
sentation results in an abrupt change at the cut-o� frequency of the sound.
This change a�ects the standard deviation of the ISDs. Thus, in this model,
the ISDs are calculated only within the bandwidth of the incoming sound.

Fig. 4. Example of the comparison process for a target polar angle of 30◦. Left:
ISDs as a function of the template angle. Right: spectral standard deviation, STD,
of ISDs as a function of the template angle

The result of the comparison stage is a distance metric corresponding to the
prediction of the polar response angle. Early modeling approaches used the
minimum distance to determine the predicted response angle [55], which would
nicely �t the minimum of the distance metric used in the example reported
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here � see Fig. 4, right panel. Also, the cross-correlation coe�cient has been
used as a distance metric and its maximum has been interpreted as the pre-
diction of the response angle [37]. Both approaches represent a deterministic
interpretation of the distance metric, resulting in exactly the same predictions
for the same sounds. This is rather unrealistic. Listeners, repeatedly listening
to the same sound, often do not respond to exactly the same direction [7].
The actual responses are known to be scattered and can be even multimodal.
The scatter of one mode can be described by the Kent distribution [7], which
is an elliptical probability distribution on the two-dimensional unit sphere.

2.2 Response Probability

In order to model the probabilistic response pattern of listeners, a mapping
of the distance metric to polar-response probabilities via similarity indices,
SIs, has been proposed [24]. For a particular target angle and ear, a monau-
ral SI has been obtained by using the distance metric as the argument of a
Gaussian function with a mean of zero and a standard deviation of two � see
Fig. 5, U = 2. While this choice appears to be somewhat arbitrary, it models
the probabilistic relation between the distance metric and the probability of
responding to a given direction. Note that the resulting SI is bounded by zero
and one and valid for the analysis of the incoming sound at one ear only.

The width of the mapping function, U in Fig. 5, actually re�ects a property
of an individual listener. A listener being more precise in the response to the
same sound would need a more narrow mapping than a less precise listener.
Thus, in contrast to the previous approach [24], in the model proposed in this
section, the width of the mapping function as a listener-speci�c uncertainty, U ,
is considered. It accounts for listener-speci�c localization precision [34, 42, 56]
due to reasons like training and attention [14, 51]. Note that for simplicity,
direction-dependent response precision is neglected. The lower the uncertainty,
U , the higher the assumed sensitivity of the listener to distinguish spectral
features. In the next section, this parameter will be used to calibrate the model
to listener-speci�c performance.

The model stages described so far are monaural. Thus, they do not consider
binaural cues and have been designed for the median SP where the interaural
di�erences are zero and thus binaural cues do not contribute. In order to take
into account the contribution of both ears, the monaural model results for
both ears are combined. Previous approaches averaged the monaural SIs for
both ears [24] and thus were able to consider the contribution of both ears
for targets placed in the median SP. In the model proposed in this section,
the lateral target range is extended to arbitrary SPs by applying a binaural
weighting function [12, 29], which reduces the contribution of the contralateral
ear depending on the perceived lateral direction of the target sound. Thus,
the binaural weighting function is applied to each monaural SI, and the sum
of the weighted monaural SIs yields the binaural SI.



Localization Performance in Spatial Audio 9

Fig. 5. Left: mapping function of SI, top, for various uncertainties, U , and the
resulting PMVs, bottom � corresponding to the example shown in Fig. 4. Right:
predicted response PMV of the localization model as a function of the target angle,
i.e. prediction matrix, for the baseline condition in the median SP for listener NH58.
Response probabilities are encoded by brightness

For an incoming sound, the binaural SIs are calculated for all template en-
tries selected by the template angle. Such a binaural SI as a function of the
template angle is related to the listener's response probability as a function
of the response angle. It can be interpreted as a discrete version of a proba-
bility density function, namely, a probability mass vector, PMV, showing the
probability of responding at an angle to a particular target. In order to obtain
a PMV, the binaural SI is normalized to have a sum of one. Note that this
normalization assumes that the template angles regularly sample an SP. If
this is not the case, regularization by spline interpolation is applied before the
normalization.

The PMVs, calculated separately for each target under consideration, are
represented in a prediction matrix. This matrix describes the probability of
responding at a polar angle given a target placed at a speci�c angle. The right
panel of Fig. 5 shows the prediction matrix resulting for the exemplary listener,
NH58, in a baseline condition where the listener uses his/her own DTFs, and
all available listener-speci�c DTFs are used as targets. The abscissa shows
the target angle, the ordinate shows the response angle and the brightness
represents the response probability. This representation is used throughout the
following sections and it also allows for a visual comparison between the model
predictions and the responses obtained from actual localization experiments.
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2.3 Interpretation of the Probabilistic Model Predictions

In order to compare the probabilistic results from the model with the experi-
mental results, likelihood statistics, calculated for actual responses from sound
localization experiments and for responses resulting from virtual experiments
driven by the model prediction, can be used � see equation (1) in [24]. The
comparison between the two likelihoods allows one to evaluate the validity of
the model, because only for similar likelihoods the model is assumed to yield
valid predictions. The likelihood has, however, a weak correspondence with
localization performance parameters commonly used in psychophysics.

Localization performance in the polar dimension usually considers local
errors and hemi�eld confusions [35]. Although these errors derived by geo-
metrical aspects cannot su�ciently represent the current understanding of
human hearing, they are frequently used and thus enable comparison of re-
sults between studies. Quadrant errors, QEs, that is the percentage of polar
errors larger or equal to 90◦, represent the confusions between hemi�elds �
for instance, front/back or up/down � without considering the local response
pattern. Unimodal local responses can be represented as a Kent distribution
[7], which, considering the polar dimension only, can be approximated by the
polar bias and polar variance. Thus, the local errors are calculated only for
local responses within the correct hemi�eld, namely, without the responses
yielding the QEs. A single representation of the local errors is the local po-
lar RMS error, PE, which combines localization bias and variance in a single
metric.

In the proposed model, QEs and PEs are calculated from the PMVs. The
QE is the sum of the PMV entries outside the local polar range for which the
response-target di�erence is greater or equal to 90◦. The PE is the discrete
expectancy value within the local polar range. In the visualization of predic-
tion matrices � see for example right column of Fig. 5 � bright areas in the
upper left and bottom right corners would indicate large QEs, a strong con-
centration of the brightness at the diagonal would indicate small PEs. Both
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2.3 Interpretation of the Probabilistic Model Predictions

In order to compare the probabilistic results from the model with the experi-
mental results, likelihood statistics, calculated for actual responses from sound
localization experiments and for responses resulting from virtual experiments
driven by the model prediction, can be used – see equation (1) in [24]. The
comparison between the two likelihoods allows one to evaluate the validity of
the model, because only for similar likelihoods the model is assumed to yield
valid predictions. The likelihood has, however, a weak correspondence with
localization performance parameters commonly used in psychophysics.

Localization performance in the polar dimension usually considers local
errors and hemifield confusions [35]. Although these errors derived by geo-
metrical aspects cannot sufficiently represent the current understanding of
human hearing, they are frequently used and thus enable comparison of re-
sults between studies. Quadrant errors, QE, that is the percentage of polar
errors larger or equal to 90�, represent the confusions between hemifields –
for instance, front/back or up/down – without considering the local response
pattern. Unimodal local responses can be represented as a Kent distribution
[7], which, considering the polar dimension only, can be approximated by the
polar bias and polar variance. Thus, the local errors are calculated only for
local responses within the correct hemifield, namely, without the responses
yielding the QEs. A single representation of the local errors is the local po-
lar RMS error, PE, which combines localization bias and variance in a single
metric.
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In the new model, QEs and PEs are calculated from the PMVs. The QE
is the sum of the PMV entries outside the local polar range for which the
response-target difference is greater or equal to 90�. The PE is the discrete
expectancy value within the local polar range. In the visualization of predic-
tion matrices – see for example right column of Fig. 5 – bright areas in the
upper left and bottom right corners would indicate large QEs, a strong con-

Fig. 6. Structure of the proposed SP localization model � see text for the description
of the stages
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errors can be calculated either for a speci�c target angle or as the arithmetic
average across all target angles considered in the prediction matrix.

Figure 6 summarizes the �nal structure of the model. It requires the in-
coming signal from a sound source as the input and results in the response
probability as a function of response angle, namely, PMV, for given template
DTFs. Then, from PMVs calculated for the available target angles, QEs and
PEs are calculated for a direct comparison with the outcome of a sound-
localization experiment.

3 Listener-speci�c Calibration and Evaluation

Listeners show an individual localization performance even when localizing
broadband sounds in free �eld [31]. While the listener-speci�c di�erences in
the HRTFs may play a role, also other factors like experience, attention, or
utilization of auditory cues might be responsible for di�erences in the local-
ization performance. Thus, this section is concerned with the calibration of
the model for each particular listener. By creating calibrations for 17 listeners,
a pool of listener-speci�c models is provided. In order to estimate the use of
this pool in future applications, the performance of this pool is evaluated in
two experiments. In Sect. 4, the pool is applied to various applications.

3.1 Calibration: Pool of Listener-speci�c Models

The SP localization model is calibrated to the baseline performance of a lis-
tener in terms of �nding an optimal uncertainty, U . Recall that the lower the
uncertainty, U , the higher the assumed e�ciency of the listener in evaluating
spectral features. An optimal U minimizes the di�erence between the predict-
ed and the listener's actual baseline performance in terms of a joint metric of
QE and PE, namely, the L2-norm.

The actual baseline performance was obtained in localization experiments
where a listener was localizing sounds using his/her own DTFs presented via
headphones. Gaussian white noise bursts with a duration of 500ms and a
fade-in/out of 10ms were used as stimuli. The acoustic targets were available
for elevations from −30◦ to 80◦ in the lateral range of at least ±30◦ around
the median SP. Listeners responded by manually pointing to the perceived
direction of a target. For more details on the experimental methods see [30,
10, 51].

The model predictions were calculated considering SPs within the lateral
range of ±30◦. The targets were clustered to SPs with a width of 20◦ each.
For the peripheral processing, the lower and upper corner frequency was 0.7
and 18 kHz, respectively, resulting in 18 frequency bands with a spacing of
one ERB.

Table 1 shows the values of the uncertainty, U , for the pool of 17 listeners.
The impact of the calibration becomes striking by comparing the predictions
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Table 1. Values of the uncertainty U for the pool of listener-speci�c models iden-
ti�ed by listener IDs, NHn.

NHn 12 15 21 22 33 39 41 42 43 46 55 58 62 64 69 71 72

U 1.6 2.0 1.8 2.0 2.3 2.3 3.0 1.8 1.9 1.8 2.0 1.4 2.2 2.1 2.1 2.1 2.2

based on the listener-speci�c, calibrated pool with the predictions basing on
the pool using U = 2 for all listeners as in [24]. Figure 7 shows the actual
and predicted performance as a comparison with a pool calibrated to U = 2
for all listeners and a listener-speci�c calibrated pool. Note the substantially
higher correlation between the prediction with the actual results in the case
of the listener-speci�c calibration. The correlation coe�cients in the order of
r = 0.85 provide evidence for su�cient power in the predictions for the pool.

Fig. 7. Localization performance, PE, QE. Bars: predicted by the model. Aster-
isks: actual performance obtained in sound localization experiments. Top: model
predictions for U = 2 as in [24]. Bottom: model predictions for listener-speci�c cal-
ibration. r. . . Pearson's correlation coe�cient with respect to actual and predicted
performance

3.2 Evaluation

In order to evaluate the SP localization model, the experimental data from two
studies investigating stationary broadband sounds are modeled and compared
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to the experimental results. Only two studies were available because both the
listener-speci�c HRTFs and the corresponding responses are necessary for the
evaluation. For each of these studies, two predictions are calculated, namely,
one for the listeners who actually participated in that experiment and one for
the whole pool of listener-speci�c, calibrated models. For the participants, the
predictions are done on the basis of the actual targets, whereas for the pool,
all targets are considered by randomly drawing from the available DTFs.

E�ect of the number of spectral channels

A previous study tested the e�ect of the number of spectral channels on the
localization performance in the median SP [10]. While that study was focused
on cochlear-implant processing, the localization experiments were done on
listeners with normal hearing using a Gaussian-envelope tone vocoder � for
more details see [10]. The frequency range of 0.3�16 kHz was divided into 3,

Fig. 8. E�ect of the number of spectral channels for NH42. Top: channelized DTFs
of median SP, left ear, brightness-encoded magnitude as in Fig. 1, right panel � from
[10]. Bottom: prediction matrices with brightness-encoded probability as in Fig. 5,
right panel, and actual responses, open circles. Left: unlimited number of channels.
Center: 24 spectral channels. Right: 9 spectral channels. A. . . actual performance
from [10], P. . . predicted performance
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6, 9, 12, 18, or 24 channels, equally spaced on the logarithmic frequency scale.
The top row of Fig. 8 shows the channelized DTFs from an exemplary listener.

The bottom row of Fig. 8 shows the corresponding prediction matrices in-
cluding the actual responses � open circles � for this particular listener. Note
the correspondence of the localization performance for that particular listener
between the actual responses, A, and the model predictions, P. Good corre-
spondence between the actual responses and prediction matrices was found
for most of the tested listeners, which is supported by the overall response-
prediction-correlation coe�cients of 0.62 and 0.74 for PE and QE, respectively.

Figure 9 shows the predicted and the actual performance as averages over
the listeners. In comparison to the actual performance, the models underesti-
mated the PEs for 12 and 18 channels and overestimated them for 3 channels.
The predictions for the pool seem to follow the predictions for the actually
tested listeners showing generally similar QEs but slightly smaller PEs. While
the analysis of the nature of these errors is outside of the focus of this chapter,
both predictions, those for the actual listeners and those for the pool, seem
to well represent the actual performance in this localization experiment.

Fig. 9. Localization performance, namely, PE and QE, for listener groups as func-
tions of the number of spectral channels. Open circles: actual performance of the
listeners replotted from [10]. Filled circles: performance predicted for the listeners
tested in [10] using the targets from [10]. Filled squares: performance predicted for
the listener pool, using randomly chosen targets. Error bars: ±1 standard deviations
of the average over the listeners. Dashed line: chance performance corresponding to
guessing the direction of the sound. CL. . . unlimited number of channels, broadband
clicks

E�ect of band limitation and spectral warping

In another previous study, localization performance was tested in listeners
using their original DTFs, band-limited DTFs and spectrally warped DTFs
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[51]. The band limitation was done at 8.5 kHz. The spectral warping com-
pressed the spectral features in each DTF from the range 2.8�16 kHz to the
range 2.8�8.5 kHz. While the focus of that study was to estimate the potential
of re-learning sound localization with drastically modi�ed spectral cues in a
training paradigm, the experimental ad-hoc results from the pre-experiment
are used to evaluate the proposed model. Note that, for this purpose, the up-
per frequency of the peripheral processing stage was con�gured to 8.5 kHz for
the band-limited and warped conditions.

The top row of Fig. 10 shows the DTFs and the bottom row the prediction
matrices for the original, band-limited and warped conditions for the exem-
plary listener, NH12. The actual responses � open circles � show a good cor-
respondence to the prediction matrices. Figure 11 shows group averages of the
experimental results and the corresponding predictions. The group averages
show a good correspondence between the actual and predicted performance.
The correlation coe�cient between the actual responses and predictions was
0.81 and 0.85 for PE and QE, respectively. The predictions of the pool well
re�ect the group averages of the actual responses.

Fig. 10. Localization with the di�erent DTFs, namely, original, left column, band-
limited, center column, and spectrally warped, right column. Top: DTFs from NH12,
left ear, in the median SP. Bottom: prediction matrices for NH12. Open circles:
actual responses for NH12 from [51]. All other conventions are as in Fig. 8
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Fig. 11. Localization performance for listener groups in conditions broadband, BB,
band-limited, LP, and spectrally warped, W. Open circles: Actual performance of
the tested listeners from [51]. All other conventions are as in Fig. 9

4 Applications

The evaluation from the previous section shows response-prediction correla-
tion coe�cients in the order of 0.75. This indicates that the proposed model is
reliable in predicting localization performance when applied with the listener-
speci�c calibrations. Thus, in this section, the calibrated models are applied
to predict localization performance in order to address issues potentially in-
teresting in spatial-audio applications.

4.1 Non-individualized Binaural Recordings

Fig. 12. DTFs of median SP, left ear. Left: NH12. Center: NH58. Right: NH33.
Brightness: Spectral magnitude � for code see Fig. 1, right panel

Binaural recordings aim at creating a spatial impression when listening vi-
a headphones. They are usually created using either an arti�cial head or
mounting microphones into the ear canal of a listener and, thus, implicitly
use HRTFs. When listening to binaural recordings, the HRTFs of the listener
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do not necessarily correspond to those used in the recordings. HRTFs are, how-
ever, generally highly listener-speci�c and the relevant spectral features di�er
across listeners � see Fig. 12. Usually, SP localization performance degrades
when listening to binaural signals created with non-individualized HRTFs [34].
The degree of the performance deterioration can be expected to depend on
the similarity of the listener's DTFs with those actually applied. Here, the
proposed model is used to estimate the localization performance for non-
individualized binaural recordings. Figure 13 compares the performance when
listening to individualized recordings with the average performance when lis-
tening to non-individualized recordings created from all other 16 listeners. It
is evident that, on average, listening with other ears results in an increase of
predicted localization errors.

Fig. 13. Listeners' localization performance for non-individualized versus individu-
alized DTFs. Bars: individualized DTFs. Circles: non-individualized DTFs averaged
over 16 DTF sets. Error bars: ±1 standard deviation of the average. Dashed line:
chance performance corresponding to guessing the direction of the sound

Fig. 14. Bars: increase in predicted localization errors when listening to the DTFs
from NH58 with respect to the errors predicted when listening to individualized
DTFs. Dashed lines: chance performance, not shown if too large
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Fig. 15. Bars: localization performance of the pool listening to selected DTFs.
Circles: DTFs from NH12. Squares: DTFs from NH58. Triangles: DTFs from NH33.
Dashed line: chance performance

Thus, the question arises of how a pool of listeners would localize a binaural
recording from a particular listener, for instance, NH58. Figure 14 shows the
listener-speci�c increase in the predicted localization errors when listening
to a binaural recording spatially encoded using the DTFs from NH58 with
respect to the errors predicted for using individualized DTFs. Some of the
listeners like NH22 show only little increase in errors, while others like NH12
show large increase.

Generally, one might assume that the di�erent anatomical shapes of ears
produce more or less distinct directional features. Thus, the quality of the
HRTFs might vary, having e�ect on the ability to localize sounds in the SPs.
Figure 15 shows the performance of the pool, using the DTFs from NH12,
NH58 and NH33. The DTFs from these three listeners provided best, mod-
erate and worst performance, respectively, predicted for the pool listening to
binaural signals created with one of those DTF sets.

This analysis demonstrates how to evaluate across-listener compatibility
of binaural recordings. Such an analysis can also be applied for other purposes
like the evaluation of HRTFs of arti�cial heads for providing su�cient spatial
cues for binaural recordings.

4.2 Assessing the Quality of Spatial Cues in Hearing-assist Devices

In the development of hearing-assist devices, the casing, its placement on the
head and the placement of the microphone in the casing play an important
role for the e�ective directional cues. The proposed SP localization model can
be used to assess the quality of the directional cues picked up by the micro-
phone in a given device. Figure 16 shows DTFs resulting from behind-the-ear,
BTE, compared to in-the-ear, ITE, placement of the microphone for the same
listener. The BTE microphone was placed above the pinna, pointing to the
front, a position commonly used by the BTE processors in cochlear-implant
systems. The bottom row of Fig. 16 shows the corresponding prediction ma-
trices and the predicted localization performance, namely, PE and QE. For
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Fig. 16. Impact of the microphone placement. Top: DTFs of median SP from
NH10, left ear. Bottom: prediction matrices. Left: ITE microphone. Right: BTE
microphone. All other conventions are as in Fig. 8

this particular listener, the model predicts that if NH10 were listening with
the BTE DTFs, his/her QE and PE would increase from 12% to 30% and
from 32◦ to 40◦, respectively. This can be clearly related to the impact of
degraded spatial cues. Note that in this analysis it was assumed that NH10
fully adapted to the particular HRTFs. This was realized by using the same
set of DTFs for the targets and the template in the model.

The impact of using BTE DTFs was also modeled for the pool of listen-
ers using the calibrated models. Two cases are considered, namely, ad-hoc
listening where the listeners are confronted with the DTF set without any ex-
perience in using it, and trained listening where the listeners are fully adapted
to the respective DTF set. Figure 17 shows the predictions for the pool. The
BTE DTFs result in performances close to guessing and the ITE DTFs from
the same listener substantially improve the performance. In trained listening,
the performance for the ITE DTFs is at the level of the individualized DTFs,
consistent with the potential of the plasticity of the spectral-to-spatial map-
ping [13]. The BTE DTFs, however, do not allow performance at the same
level as the ITE DTFs, even when full adaptation is allowed for.
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Fig. 17. Localization performance of the pool listening to di�erent DTFs. Bars:
individualized DTFs. Open symbols: ad-hoc listening. Filled symbols: trained listen-
ing. Hexagrams: ITE DTFs from NH10. Diamonds: BTE DTFs from NH10. Avg.:
average performance over all listeners. Error bars: ±1 standard deviation. Dashed
line: chance performance

This analysis shows a model-based method to optimize the microphone
placement with respect to the salience of directional cues. Such an analysis
might be advantageous in the development of future hearing-assist devices.

4.3 Phantom Sources in Surround-sound Systems

Sound synthesis systems for spatial audio have to deal with a limited number
of loudspeakers surrounding the listener. In a system with a small number
of loudspeakers, vector-base amplitude panning, VBAP [41], is commonly ap-
plied in order to create phantom sources perceived between the loudspeakers.
In a surround setup, this method is also commonly used to position the phan-
tom source along SPs, namely, to pan the source from the front to the back
[11] or from the eye level to an elevated level [41]. In this section, the proposed
model is applied to investigate the use of VBAP within SPs.

Amplitude panning along a sagittal plane

Now a VBAP setup with two loudspeakers is assumed � placed at the same
distance, in the horizontal plane at the eye level, and in the same SP. Thus,
the loudspeakers are in the front and in the back of the listener, corresponding
to polar angles of 0◦ and 180◦, respectively. While driving the loudspeakers
with the same signal, the amplitude panning ratio can be varied from 0, front
speaker only, to 1, rear speaker only, with the goal of panning the phantom
source between the two loudspeakers.
Figure 18 shows the predicted listener-speci�c response probabilities in terms
of the PMV as a function of the panning ratio for two loudspeakers placed
at the lateral angle of 30◦. The PMVs are shown for two individual listen-
ers and also for the pool of listeners. The directional stability of phantom
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Fig. 18. Predicted response probabilities, PMVs, as a function of the amplitude
panning ratio. Left: results for NH22. Center: results for NH64. Right: results
for the pool of listeners. Circle: maximum of a PMV. Panning ratio of 0: Only
front loudspeaker active. Panning ratio of 1: Only rear loudspeaker active. All other
conventions are as in Fig. 5, right panel

sources varies across listeners. For NH22, the prediction of perceived location
abruptly changes from front to back, being bimodal only around the ratio of
0.6. For NH64, the transition seems to be generally smoother, with a blur
in the perceived sound direction. Note that for NH64 and a ratio of 0.5, the
predicted direction is elevated even though the loudspeakers were placed in
the horizontal plane. On average, the results for the pool predict an abrupt
change in the perceived direction from front to back, with a blur indicating
a listener-speci�c unstable representation of the phantom source for ratios
between 0.5 and 0.7.

E�ect of loudspeaker span

The unstable synthesis of phantom sources might be reduced by using a more
adequate distance in the SP between the loudspeakers. Thus, it is shown how
to investigate the polar span between two loudspeakers required to create a
stable phantom source in the synthesis. To this end, a VBAP setup of two
loudspeakers placed in the median SP, separated by a polar angle and driven
with the panning ratio of 0.5, is used. Note that a span of 0◦ corresponds to a
synthesis with a single loudspeaker and thus to the baseline condition. In the
proposed SP localization model, the target angle describes the average of the
polar angles of both loudspeakers, which, in VBAP, is thought to correspond
to the direction of the phantom source. The model was run for all available
target angles resulting in the prediction of the localization performance.
Figure 19 shows prediction matrices and predicted localization performance
for NH12 and three di�erent loudspeaker spans. Note the large increase of
the errors from the span of 30◦�60◦, consistent with the results from [5].
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Fig. 19. Predictions for di�erent loudspeaker spans and NH12. Left: span of 0◦,
single-loudspeaker synthesis, baseline condition. Center: span of 30◦. Right: span
of 60◦. All other conventions are as in Fig. 8

Figure 20 shows the average increase in localization error predicted for the
pool of listeners as a function of the span. The increase is shown relative to
the listener-speci�c localization performance in the baseline condition. Note
that not only the localization errors but also the variance across the listeners
increase with increasing span.

This analysis shows how the model may help in choosing the adequate
loudspeaker span when amplitude panning is applied to create phantom
sources. Such an analysis can also be applied when more sophisticated sound-
�eld reproduction approaches like Ambisonics or wave-�eld synthesis are in-
volved.

Results for typical surround-sound setups

The most common standardized surround-sound setup is known as the 5.1
setup [18]. In this setup, all loudspeakers are placed in the horizontal plane

Fig. 20. Increase in localization errors as a function of the loudspeaker span. Circles:
averages over all listeners from the pool. Error bars: ±1 standard deviation
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at a constant distance around the listener. Recently, other schemes have been
proposed to include elevated speakers in the synthesis systems. The 10.2 setup,
known as Audyssey DSX [15] and the 9.1 setup, known as Auro-3D [48],
consider two and four elevated loudspeakers, respectively. Figure 21 shows the
positions of the loudspeakers in those three surround-sound setups. The model
was applied to evaluate the localization performance when VBAP is used to
pan a phantom source at the left hand side from front, L, to back, LS. While
in the 5.1 setup only loudspeakers L and LS are available, in 10.2 and 9.1 the
loudspeakers LH2 and LH1 & LSH, respectively, may also contribute even to
create an elevated phantom source.

VBAP was applied between the closest two loudspeakers using the law of
tangents [41]. For a desired polar angle of the phantom source, the panning

ratio was R = 1
2 −

tan(δ)
2 tan(0.5β) with β denoting the loudspeaker span in polar

dimension and δ denoting the di�erence between the desired polar angle and
the polar center angle of the span. The contributing loudspeakers were not
always in the same SP, thus, the lateral angle of the phantom source was
considered for the choice of the SP in the modeling by applying the law of
tangents on the lateral angles of the loudspeakers for the particular panning
ratio, R.
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Fig. 21. Loudspeaker positions of three typical surround-sound systems. Drivers
for the low-frequency e�ect, LFE, channels not shown
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Figure 22 shows the predicted pool averages of the PMVs as a function
of the desired polar angle of the phantom source. The improvements due to
the additional elevated loudspeakers in the 10.2 and 9.1 setups are evident.
Nevertheless, the predicted phantom sources are far from perfectly following
the desired angle. Especially for the 9.1 setup, in the rear hemi�eld, the in-
crease in the desired polar angle, namely, decrease in the elevation, resulted
in a decrease in the predicted polar angle, namely, increase in the elevation.

Fig. 22. Predictions for the surround setups in the VBAP con�guration. Left:
5.1 setup, panning between the loudspeakers L and LS. Center: 10.2 setup, DSX,
panning from L , polar angle of 0◦, via LH2, 55◦, to LS, 180◦. Right: 9.1 setup,
Auro-3D, panning from L, 0◦, via LH1, 34◦, and LSH, 121◦, to LS, 180◦. Desired
polar angle: Continuous scale representing the VBAP across pair-wise contributing
loudspeakers. All other conventions are as in Fig. 18

Fig. 23. Predictions for two modi�cations to the 9.1 setup, Auro 3D. Left: original
setup, loudspeakers LS and LSH at azimuth of 110◦. Center: LSH at azimuth of
140◦. Right: LS and LSH at azimuth of 140◦. All other conventions are as in Fig. 22
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The proposed model seems to be well-suited for addressing such a problem. It
is easy to show how modi�cations of the loudspeaker setup would a�ect the
perceived angle of the phantom source. As an example, the positions of the
elevated loudspeakers in the 9.1 setup were modi�ed in two ways. First, the
lateral distance between the loudspeakers, LH1 and LSH, was decreased by
modifying the azimuth of LSH from 110◦ to 140◦. Second, both loudspeak-
ers, LSH and LS, were placed to the azimuth of 140◦. Figure 23 shows the
predictions for the modi�ed setups. Compared to the original setup, the �rst
modi�cation clearly resolves the problem described above. The second modi-
�cation � right panel � while only slightly limiting the lateral range, provides
an even better representation of the phantom source along the SP.

5 Conclusions

Sound localization in SPs refers to the ability to estimate the sound-source
elevation and to distinguish between front and back. The SP localization per-
formance is usually measured in time-consuming experiments. In order to
address this disadvantage, a model predicting SP localization performance of
individual listeners has been proposed. Listener-speci�c calibration was per-
formed for a pool of 17 listeners, and the calibrated models were evaluated
using results from psychoacoustic localization experiments. The potential of
the calibrated models was demonstrated for three applications, namely,

1. The evaluation of the spatial quality of binaural recordings
2. The assessment of the spatial quality of directional cues provided by the

microphone placement in hearing-assist devices
3. The evaluation and improvement of the loudspeaker position in surround-

sound systems

These applications are thought to be examples of situations where SP local-
ization cues, namely, spectral cues, likely play a role. The model is, however,
not limited to those applications and it hopefully will help in assessing spatial
quality in other applications as well.
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arti�cial neural network, 4
auditory modeling toolbox, 5

binaural recordings, 16
non-individualized, 16

binaural weighting, 2, 8
contralateral ear, 2
ipsilateral ear, 2

calibration, 11
cochlear implant, 18
comparison process, 5, 6

distance-to-similarity mapping, 8
double-pole coordinate system, see

interaural-polar coordinate system

elevation, 1, 20
equivalent rectangular bandwidth, 6

�lter bank, 6
dual-resonance nonlinear, 6
Gammatone, 6
parabolic-shaped, 5
spacing, 6

front-back discrimination, 1

Gaussian-envelope sinusoid vocoder, 13

head-related transfer function, 3
common transfer function, 3
directional transfer function, 3

hearing-assist device, 18
casing, 18

microphone placement, 18
behind-the-ear, 18
in-the-ear, 18

horizontal-polar coordinate system, see
interaural-polar coordinate system

inter-spectral di�erences, 7
interaural spectral di�erences, 1
interaural-polar coordinate system
lateral angle, 2
polar angle, 2

interaural-polar-coordinate system, 2
internal representation, 5, 6
internal template, 5
template angle, 6

Kent distribution, 8

learning process, 5
likelihood statistics, 10
local polar error, 10

monaural spectral cues, 1
local spectral features, 2
macroscopic patterns, 2

normalization, 9

peripheral processing, 5
basilar membrane, 6
inner hair cells, 6

phantom source, 20
pool of models, 11
prediction matrix, 9
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probability mass vector, 9

quadrant error, 10

response pattern, 8

sagittal plane, 1
sagittal-plane localization, 1
band limitation, 14
baseline performance, 11
chance performance, 14
spectral channels, 13
spectral warping, 14

similarity index, 8
stimulus, 11

surround-sound system, 20
Audyssey DSX, 23
Auro-3D, 23

torso re�ections, 6

uncertainty parameter, 8

vector-base amplitude panning, 20
desired polar angle, 23
law of tangents, 23
panning ratio, 20, 23

vertical-plane localization, see sagittal-
plane localization




