Programmer Guide/SPU Reference/AVR: Difference between revisions

From STX Wiki
Jump to navigationJump to search
Line 46: Line 46:
::<math>Y[i,j]_t =  
::<math>Y[i,j]_t =  
\begin{cases}  
\begin{cases}  
\frac{1}{t+1}\sum_{z=0}^t X[i,j]_z & \mbox{if }0\leqslant t < T\mbox{ (or }T\mbox{ out of range)}\\
\X[i,j]_t & \mbox{if }t=0\mbox{ (or }T\mbox{ out of range)}\\
\frac{1}{T}\sum_{z=0}^{T-1}X[i,j]_{t-z} & \mbox{if }t\geqslant T
\frac{1}{T}\sum_{z=0}^{T-1}X[i,j]_{t-z} & \mbox{if }t>0
\end{cases}
\end{cases}
</math>
</math>

Revision as of 10:35, 6 May 2011

Average input X over evaluation cycles.

[SPU SUM X TYP T RS OUT Y]

In: X a number, vector or matrix containing the data to be averaged
TYP a number or string; defines the averaging method
T averaging parameter (number); depends on method
RS reset flag (number)
Out: Y averaged input X; same type as X
Description

The averaging algorithm is defined by the inputs TYP and T. The atom averages the elements X[i,j]t over evaluation cycles t (i=row index, j=column index, t=cycle counter) and stores the averaged value in the element Y[i,j]t.

The cycle counter t is initialized with 0 and incremented by 1 after each evaluation cycle. The cycle counter is reset, if the input RS is set to a value greater than 0. The input RS is checked each time the SPU is started.

infinite average
TYP=0 or linear
T=0
{\displaystyle Y[i,j]_{t}={\begin{cases}X[i,j]_{t}&{\mbox{if }}t=0\\{\frac {1}{t+1}}(t.Y[i,j]_{t-1}+X[i,j]_{t})&{\mbox{if }}t>0\end{cases}}}
running average
TYP=0 or linear
T>0; T is the (integer) number of averaging cycles
{\displaystyle Y[i,j]_{t}={\begin{cases}{\frac {1}{t+1}}\sum _{z=0}^{t}X[i,j]_{z}&{\mbox{if }}0\leqslant t<T\\{\frac {1}{T}}\sum _{z=0}^{T-1}X[i,j]_{t-z}&{\mbox{if }}t\geqslant T\end{cases}}}
exponential average
TYP=0 or linear
0<T<1; T is the averaging factor
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y[i,j]_t = \begin{cases} \X[i,j]_t & \mbox{if }t=0\mbox{ (or }T\mbox{ out of range)}\\ \frac{1}{T}\sum_{z=0}^{T-1}X[i,j]_{t-z} & \mbox{if }t>0 \end{cases} }
See also

<SP-atoms>

Navigation menu

Personal tools