Programmer Guide/Command Reference/EVAL/complex arithmetic: Difference between revisions

From STX Wiki
Jump to navigationJump to search
 
(One intermediate revision by the same user not shown)
Line 76: Line 76:
:;<code>''rc'' = '''cmul'''(''xc'', ''yc'')</code>: Multiply ''xc'' and ''yc'' element by element.
:;<code>''rc'' = '''cmul'''(''xc'', ''yc'')</code>: Multiply ''xc'' and ''yc'' element by element.
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>i,j</sub> * ''yc''<sub>i,j</sub></code>
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>i,j</sub> * ''yc''<sub>i,j</sub></code>
:;<code>''rc'' = '''cdiv'''(''xc'')</code>: Compute the inverse of each element of ''xc''.
::<code>''rc''<sub>i,j</sub> = 1 / ''xc''<sub>i,j</sub></code>
:;<code>''rc'' = '''cdiv'''(''xc'', ''n'')</code>: Divide each element of ''xc'' by the complex number ''n''.
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>i,j</sub> / ''n''</code>
:;<code>''rc'' = '''cdiv'''(''xc'', ''yc'')</code>: Divide ''xc'' by ''yc'' element by element.
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>i,j</sub> / ''yc''<sub>i,j</sub></code>


==special functions==
==special functions==

Latest revision as of 10:15, 2 May 2012

Because the current version of the STx EVAL command does not support a complex data type, a package of functions is used to implement arithmetic and special handling for complex numbers.

The package consists of the following functions:

cr2p, cp2r, conj, cr2len, cr2phi, cget, cset, conj, cmul, cdiv, ctrn, cdot, cmulv

complex numerical objects

  • A complex number or complex scalar is a numerical object v with 2 rows and 1 column (a vector):
v[0] = re (cartesian: real part) or len (polar: length)
v[1] = im (cartesian: imaginary part) or phi (polar: phase)
  • A complex vector with N elements is a numerical object v with 2N rows and 1 column (a vector):
v[2*i] = rei or leni
v[2*i+1] = imi or phii
  • A complex matrix with MxN elements is a numerical object v with 2N rows and M columns (a matrix):
v[2*i,j] = rei,j or leni,j
v[2*i+1,j] = imi,j or phii,j
  • In general a numerical object containing N x M complex numbers (N≥1, M≥1), consists of 2N rows and M columns, because each complex number uses two cells of a row.
  • If a numerical object containing N x M complex numbers, is converted element-wise to real, the resulting object consists of N x M real numbers.

complex → complex

xc ... any complex type
rc .. ... same complex type as xc
rc = cr2p(xc)
Convert xc from cartesian (real, imaginary) to polar (length, phase) format.
rc = cp2r(xc)
Convert xc from polar (length, phase) to cartesian (real, imaginary) format.
rc = conj(xc)
Conjugate xc; xc must be in cartesian format.

complex → real

xc ... any complex type
r ... same real type as xc
r = cr2len(xc)
Compute length of xc; xc is stored in cartesian format.
r = cr2phi(xc)
Compute phase of xc; xc is stored in cartesian format.
r = cget(xc, 0)
Get real part or length of xc (depends on format of xc).
r = cget(xc, 1)
Get imaginary part or phase of xc (depends on format of xc).

real → complex

x ... any real type
y ... same type as x
rc ... same complex type as x
rc = cset(x, y)
Combine elements of x (real part or length) and y (imaginary part or phase) to complex numbers.

multiplication and division (element-wise)

xc ... any complex type (re,im)
yc ... same complex type as 'xc'
n ... real or complex number (re,im)
result rc ... same complex type as xc
rc = cmul(xc, n)
rc = cmul(n, xc)
Multiply each element of xc with the real or complex number n.
rci,j = xci,j * n
rc = cmul(xc, yc)
Multiply xc and yc element by element.
rci,j = xci,j * yci,j
rc = cdiv(xc)
Compute the inverse of each element of xc.
rci,j = 1 / xci,j
rc = cdiv(xc, n)
Divide each element of xc by the complex number n.
rci,j = xci,j / n
rc = cdiv(xc, yc)
Divide xc by yc element by element.
rci,j = xci,j / yci,j

special functions

rcmatrix = ctrn(xcmatrix)
Transposed the complex matrix xc.
rci,j = xcj,i
rcscalar = cdot(xcvector, ycvector)
Compute the dot product (inner product) of the two complex vectors xc and yc (both with N elements).
rc = sumi=0..N-1 (xci * yci) , i=0..N-1
rcmatrix = cmulv(xcvector, ycvector)
Compute the tensor (or dyadic) product of the two complex vectors xc and yc.
rci,j = xci * ycj
rcvector = cmulv(xcvector, ycmatrix)
Compute the product of the complex vector xc (N elements) and the complex matrix yc (N rows, M columns).
rcj = sumi=0..N-1 (xci * yci,j) , j=0..M-1
rcvector = cmulv(xcmatrix, ycvector)
Compute the product of the complex matrix xc (N rows, M columns) and the complex vector yc (M elements).
rci = sumj=0..M-1 (xci,j * ycj) , i=0..N-1
rcmatrix = cmulv(xcmatrix, ycmatrix)
Compute the product of the complex NxM matrix xc and the complex MxL matrix yc. The result is the complex NxL matrix rc.
rci,k = sumj=0..M-1 (xci,j * ycj,i) , i=0..N-1 and k=0..L-1

See also

complex numbers, vvset, vvget, vv, fft, dft

<function list>

Navigation menu

Personal tools