Programmer Guide/Command Reference/EVAL/wsum: Difference between revisions
From STX Wiki
< Programmer Guide | Command Reference | EVAL
Jump to navigationJump to search
No edit summary |
No edit summary |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:{{SUBPAGENAME}}}} | {{DISPLAYTITLE:{{SUBPAGENAME}}}} | ||
Calculate the weighted sum over one or more user-defined extents of a function <var>y = f(x)</var>. Depending on the number of extents, the result of the function is a vector or a scalar. | Calculate the weighted sum over one or more user-defined extents of a function <var>y = f(x)</var>. Depending on the number of extents, the result of the function is a vector or a scalar. | ||
;Usage: | ;Usage: | ||
: | :<code>wsum(<var>x</var>, <var>y</var>, <var>w</var>, <var>s</var>, <var>us</var>, <var>os</var>, <var>n</var>)</code> | ||
: | :<code>wsum(<var>x</var>, <var>y</var>, <var>w</var>, <var>s</var>, <var>uv</var>, <var>ov</var>)</code> | ||
: | :<code>wsum(<var>x</var>, <var>y</var>, <var>w</var>, <var>s</var>, <var>rv</var>)</code> | ||
: | :<code>wsum(<var>x</var>, <var>y</var>, <var>w</var>, <var>s</var>, <var>rm</var>)</code> | ||
:;<var>x, y</var>: the x- and y-data vector | :;<var>x, y</var>: the x- and y-data vector: <code>''y''[i] = f(''x''[i])</code> | ||
:;<var>w</var>defines the type of the weighting function | :;<var>w</var>: defines the type of the weighting function | ||
::{class="keinrahmen" | ::{|class="keinrahmen" | ||
|''w''=0 ||no weight (rectangle) | |''w''=0 ||no weight (rectangle) | ||
|- | |- | ||
Line 18: | Line 17: | ||
|''w''=2 ||hamming window | |''w''=2 ||hamming window | ||
|} | |} | ||
:;<var>s</var>if this argument is set to '''1''' the sum of each extent is normalized (scaled by <code>1/sum(weights)</code>), otherwise not | :;<var>s</var>: if this argument is set to '''1''' the sum of each extent is normalized (scaled by <code>1/sum(weights)</code>), otherwise not | ||
:;<var>us, os, n</var>: Every pair <code>{''us''+d*i, ''us''+d*(i+1)} (with: d=(''os''-''us'')/n, i=0..n-1)</code> defines an extent to sum. All three arguments are scalars. | |||
:;<var>uv, ov</var>: Every pair <code>{''uv''[i], ''ov''[i]} (with: i=0..nrow(''uv'')-1)</code> defines an extent to sum. Both arguments must be vectors with same length. | |||
:;<var>rv</var>: Every pair <code>{''rv''[i], ''rv''[i+1]} (with: i=0..nrow(''rv'')-2)</code> defines an extent to sum. The argument must be vector. | |||
:;<var>rm</var>: Every pair <code>{''rm''[i,0], ''rm''[i,1]} (with: i=0..nrow(''rm'')-1)</code> defines an extent to sum. The argument must be matrix with 2 columns. | |||
;Result: The result ''r'' is a scalar or a vector. Each element ''r''<sub>i</sub> is the sum of weighted the ''y '' values over the i-th extent {xmin<sub>i</sub>, xmax<sub>i</sub>}. | |||
:Note: an extent is defined by the x-range {xmin, xmax} and not by the indices! | :Note: an extent is defined by the x-range {xmin, xmax} and not by the indices! | ||
;See also: [[../sum|sum]], [[../hist|hist]] | |||
[[ | [[../#Functions|<function list>]] |
Latest revision as of 12:22, 21 April 2011
Calculate the weighted sum over one or more user-defined extents of a function y = f(x). Depending on the number of extents, the result of the function is a vector or a scalar.
- Usage
wsum(x, y, w, s, us, os, n)
wsum(x, y, w, s, uv, ov)
wsum(x, y, w, s, rv)
wsum(x, y, w, s, rm)
- x, y
- the x- and y-data vector:
y[i] = f(x[i])
- w
- defines the type of the weighting function
w=0 no weight (rectangle) w=1 triangle w=2 hanning window w=2 hamming window
- s
- if this argument is set to 1 the sum of each extent is normalized (scaled by
1/sum(weights)
), otherwise not - us, os, n
- Every pair
{us+d*i, us+d*(i+1)} (with: d=(os-us)/n, i=0..n-1)
defines an extent to sum. All three arguments are scalars. - uv, ov
- Every pair
{uv[i], ov[i]} (with: i=0..nrow(uv)-1)
defines an extent to sum. Both arguments must be vectors with same length. - rv
- Every pair
{rv[i], rv[i+1]} (with: i=0..nrow(rv)-2)
defines an extent to sum. The argument must be vector. - rm
- Every pair
{rm[i,0], rm[i,1]} (with: i=0..nrow(rm)-1)
defines an extent to sum. The argument must be matrix with 2 columns.