Programmer Guide/Command Reference/EVAL/complex arithmetic: Difference between revisions

From STX Wiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 5: Line 5:
* A numerical object containing '''N x M''' complex numbers (N>=1, M>=1), consists of 2N rows and M columns, because each complex number uses two cells of a row.
* A numerical object containing '''N x M''' complex numbers (N>=1, M>=1), consists of 2N rows and M columns, because each complex number uses two cells of a row.
* If a numerical object containing '''N x M''' complex numbers, is converted element-wise to real numbers, the resulting object consists of N rows and M columns.
* If a numerical object containing '''N x M''' complex numbers, is converted element-wise to real numbers, the resulting object consists of N rows and M columns.
 
----
;complex -> complex:
;complex -> complex:
:{|class="einrahmen"
:{|class="einrahmen"
Line 17: Line 17:
:;<code>''rc''=cp2r(''xc'')</code>: Convert ''xc'' from polar (length, phase) to cartesian (real, imaginary) format.
:;<code>''rc''=cp2r(''xc'')</code>: Convert ''xc'' from polar (length, phase) to cartesian (real, imaginary) format.
:;<code>''rc''=conj(''xc'')</code>: Conjugate ''xc''; ''xc'' must be in cartesian format.
:;<code>''rc''=conj(''xc'')</code>: Conjugate ''xc''; ''xc'' must be in cartesian format.
 
----
;complex -> real:
;complex -> real:
:{|class="einrahmen"
:{|class="einrahmen"
Line 26: Line 26:
| same '''real''' type as ''xc''  
| same '''real''' type as ''xc''  
|}
|}
:;<code>''r''=cr2len(''xc''): Compute length of ''xc''; ''xc'' is stored in cartesian format.
:;<code>''r''=cr2len(''xc'')</code>: Compute length of ''xc''; ''xc'' is stored in cartesian format.
:;<code>''r''=cr2phi(''xc'')</code>: Compute phase of ''xc''; ''xc'' is stored in cartesian format.
:;<code>''r''=cr2phi(''xc'')</code>: Compute phase of ''xc''; ''xc'' is stored in cartesian format.
:;<code>''r''=cget(''xc'',0)</code>: Get real part or length of ''xc'' (depends on format of ''xc'').
:;<code>''r''=cget(''xc'',0)</code>: Get real part or length of ''xc'' (depends on format of ''xc'').
:;<code>''r''=cget(''xc'',1)</code>: Get imaginary part or phase of ''xc'' (depends on format of ''xc'').
:;<code>''r''=cget(''xc'',1)</code>: Get imaginary part or phase of ''xc'' (depends on format of ''xc'').
 
----
;real -> complex:
;real -> complex:
:{|class="einrahmen"
:{|class="einrahmen"
Line 43: Line 43:
|}
|}
:;<code>''rc''=cset(''x'',''y'')</code>: Combine elements of ''x'' (real part or length) and ''y'' (imaginary part or phase) to a complex numbers  
:;<code>''rc''=cset(''x'',''y'')</code>: Combine elements of ''x'' (real part or length) and ''y'' (imaginary part or phase) to a complex numbers  
 
----
;multiplication (element-wise)
;multiplication (element-wise)
:{|class="einrahmen"
:{|class="einrahmen"
Line 60: Line 60:
:;<code>''rc''=cmul(''xc'',''n'')</code>
:;<code>''rc''=cmul(''xc'',''n'')</code>
:;<code>''rc''=cmul(''n'',''xc'')</code>: Multiply each element of ''xc'' with the real or complex number ''n''.
:;<code>''rc''=cmul(''n'',''xc'')</code>: Multiply each element of ''xc'' with the real or complex number ''n''.
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>i,j</sub> * ''n''</code>
:;<code>''rc''=cmul(''xc'',''yc'')</code>: Multiply ''xc'' and ''yc'' element by element.
:;<code>''rc''=cmul(''xc'',''yc'')</code>: Multiply ''xc'' and ''yc'' element by element.
 
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>i,j</sub> * ''yc''<sub>i,j</sub></code>
----
;vector and matrix multiplication:
;vector and matrix multiplication:
:;<code>''rc''<sub>matrix</sub>=cmulv(''xc''<sub>vector</sub>,''yc''<sub>vector</sub>)</code>: Compute the tensor (or dyadic) product of the two complex vectors ''xc'' and ''yc'':
:;<code>''rc''<sub>matrix</sub>=cmulv(''xc''<sub>vector</sub>,''yc''<sub>vector</sub>)</code>: Compute the tensor (or dyadic) product of the two complex vectors ''xc'' and ''yc'':
Line 71: Line 73:
:;<code>''rc''<sub>matrix</sub>=cmulv(''xc''<sub>matrix</sub>,''yc''<sub>matrix</sub>)</code>: Compute the product of the complex '''NxM''' matrix ''xc'' and the complex '''MxL''' matrix ''yc''. The result is the complex NxL matrix ''rc''.
:;<code>''rc''<sub>matrix</sub>=cmulv(''xc''<sub>matrix</sub>,''yc''<sub>matrix</sub>)</code>: Compute the product of the complex '''NxM''' matrix ''xc'' and the complex '''MxL''' matrix ''yc''. The result is the complex NxL matrix ''rc''.
::<code>''rc''<sub>i,k</sub> = sum<sub>j=0..M-1</sub> (''xc''<sub>i,j</sub> * ''yc''<sub>j,i</sub>) , i=0..N-1 and k=0..L-1</code>
::<code>''rc''<sub>i,k</sub> = sum<sub>j=0..M-1</sub> (''xc''<sub>i,j</sub> * ''yc''<sub>j,i</sub>) , i=0..N-1 and k=0..L-1</code>
 
----
 
;special functions
;special functions
:;<code>''rc''=cdot(''xc'',''yc'')</code>: the result ''rc'' (complex number) is the dot product of the complex vectors ''xc'' and ''yc''
:;<code>''rc''=cdot(''xc'',''yc'')</code>: the result ''rc'' (complex number) is the dot product of the complex vectors ''xc'' and ''yc''

Revision as of 14:10, 7 April 2011

Because the current version of the STx EVAL command do not support a complex data type, a package of functions is used to implement arithmetic and special handling for complex numbers.

Note:

  • A numerical object containing N x M complex numbers (N>=1, M>=1), consists of 2N rows and M columns, because each complex number uses two cells of a row.
  • If a numerical object containing N x M complex numbers, is converted element-wise to real numbers, the resulting object consists of N rows and M columns.

complex -> complex
argument xc any complex type
result rc same complex type as xc
rc=cr2p(xc)
Convert xc from cartesian (real, imaginary) to polar (length, phase) format.
rc=cp2r(xc)
Convert xc from polar (length, phase) to cartesian (real, imaginary) format.
rc=conj(xc)
Conjugate xc; xc must be in cartesian format.

complex -> real
argument xc any complex type
result r same real type as xc
r=cr2len(xc)
Compute length of xc; xc is stored in cartesian format.
r=cr2phi(xc)
Compute phase of xc; xc is stored in cartesian format.
r=cget(xc,0)
Get real part or length of xc (depends on format of xc).
r=cget(xc,1)
Get imaginary part or phase of xc (depends on format of xc).

real -> complex
argument x any real type
argument y same type as x
result rc same complex type as x
rc=cset(x,y)
Combine elements of x (real part or length) and y (imaginary part or phase) to a complex numbers

multiplication (element-wise)
argument xc any complex type (re,im)
argument yc same type as 'xc'
argument n a real or complex number (re,im)
result rc same complex type as xc
rc=cmul(xc,n)
rc=cmul(n,xc)
Multiply each element of xc with the real or complex number n.
rci,j = xci,j * n
rc=cmul(xc,yc)
Multiply xc and yc element by element.
rci,j = xci,j * yci,j

vector and matrix multiplication
rcmatrix=cmulv(xcvector,ycvector)
Compute the tensor (or dyadic) product of the two complex vectors xc and yc:
rci,j = xci * ycj
rcvector=cmulv(xcvector,ycmatrix)
Compute the product of the complex vector xc (N elements) and the complex matrix yc (N rows, M columns).
rcj = sumi=0..N-1 (xci * yci,j) , j=0..M-1
rcvector=cmulv(xcmatrix,ycvector)
Compute the product of the complex matrix xc (N rows, M columns) and the complex vector yc (M elements).
rci = sumj=0..M-1 (xci,j * ycj) , i=0..N-1
rcmatrix=cmulv(xcmatrix,ycmatrix)
Compute the product of the complex NxM matrix xc and the complex MxL matrix yc. The result is the complex NxL matrix rc.
rci,k = sumj=0..M-1 (xci,j * ycj,i) , i=0..N-1 and k=0..L-1

special functions
rc=cdot(xc,yc)
the result rc (complex number) is the dot product of the complex vectors xc and yc
rc=ctrn(xc)
the result rc is transposed matrix of the complex matrix xc


See also
fft, complex numbers

<function list>

Navigation menu

Personal tools