Programmer Guide/Command Reference/EVAL/complex arithmetic: Difference between revisions

From STX Wiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
{{DISPLAYTITLE:complex arithmetic}}
{{DISPLAYTITLE:complex arithmetic}}


Because the current version of the {{STX}} [[Programmer_Guide/Command_Reference/EVAL|EVAL command]] do not support a complex data type, a package of functions is used to implement arithmetic and special handling for [[Programmer_Guide/Command_Reference/EVAL#complex numbers|complex numbers]].
Because the current version of the {{STX}} [[Programmer_Guide/Command_Reference/EVAL|EVAL command]] do not support a complex data type, a package of functions is used to implement arithmetic and special handling for [[#complex numerical objects|complex numbers]].


The package consists of the following functions:  
The package consists of the following functions:  
:<code>[[#complex->complex|cr2p, cp2r, conj]], cr2len, cr2phi, cp2r, cget, cset, conj, ctrn, cdot, cmul, cmulv</code>
:[[#complex->complex|cr2p, cp2r, conj]], [[#complex->real|cr2len, cr2phi, cget]], [[#real->complex|cset, conj, [[#multiplication (element-wise)|cmul]], [[#special functions|ctrn, cdot, cmulv]]


====Complex numerical objects====
====complex numerical objects====
:* A complex number or complex scalar is a numerical object ''v'' with 2 rows and 1 column (a vector):
:* A complex number or complex scalar is a numerical object ''v'' with 2 rows and 1 column (a vector):
:::{|class="keinrahmen"
:::{|class="keinrahmen"
Line 37: Line 37:
|''rc'' ..||... same '''complex''' type as ''xc''
|''rc'' ..||... same '''complex''' type as ''xc''
|}
|}
:;<code>''rc''=cr2p(''xc'')</code>: Convert ''xc'' from cartesian (real, imaginary) to polar (length, phase) format.
:;<code>''rc''='''cr2p'''(''xc'')</code>: Convert ''xc'' from cartesian (real, imaginary) to polar (length, phase) format.
:;<code>''rc''=cp2r(''xc'')</code>: Convert ''xc'' from polar (length, phase) to cartesian (real, imaginary) format.
:;<code>''rc''='''cp2r'''(''xc'')</code>: Convert ''xc'' from polar (length, phase) to cartesian (real, imaginary) format.
:;<code>''rc''=conj(''xc'')</code>: Conjugate ''xc''; ''xc'' must be in cartesian format.
:;<code>''rc''='''conj'''(''xc'')</code>: Conjugate ''xc''; ''xc'' must be in cartesian format.


====complex -> real====
====complex->real====
:{|class="keinrahmen"
:{|class="keinrahmen"
|''xc'' ||... any complex type
|''xc'' ||... any complex type
Line 47: Line 47:
|''r'' ||... same '''real''' type as ''xc''  
|''r'' ||... same '''real''' type as ''xc''  
|}
|}
:;<code>''r''=cr2len(''xc'')</code>: Compute length of ''xc''; ''xc'' is stored in cartesian format.
:;<code>''r''='''cr2len'''(''xc'')</code>: Compute length of ''xc''; ''xc'' is stored in cartesian format.
:;<code>''r''=cr2phi(''xc'')</code>: Compute phase of ''xc''; ''xc'' is stored in cartesian format.
:;<code>''r''='''cr2phi'''(''xc'')</code>: Compute phase of ''xc''; ''xc'' is stored in cartesian format.
:;<code>''r''=cget(''xc'',0)</code>: Get real part or length of ''xc'' (depends on format of ''xc'').
:;<code>''r''='''cget'''(''xc'',0)</code>: Get real part or length of ''xc'' (depends on format of ''xc'').
:;<code>''r''=cget(''xc'',1)</code>: Get imaginary part or phase of ''xc'' (depends on format of ''xc'').
:;<code>''r''='''cget'''(''xc'',1)</code>: Get imaginary part or phase of ''xc'' (depends on format of ''xc'').


====real -> complex====
====real->complex====
:{|class="keinrahmen"
:{|class="keinrahmen"
|''x'' ||... any real type
|''x'' ||... any real type
Line 60: Line 60:
|''rc'' ||... same '''complex''' type as ''x''  
|''rc'' ||... same '''complex''' type as ''x''  
|}
|}
:;<code>''rc''=cset(''x'',''y'')</code>: Combine elements of ''x'' (real part or length) and ''y'' (imaginary part or phase) to complex numbers.
:;<code>''rc''='''cset'''(''x'',''y'')</code>: Combine elements of ''x'' (real part or length) and ''y'' (imaginary part or phase) to complex numbers.


====multiplication (element-wise)====
====multiplication (element-wise)====
Line 72: Line 72:
|result ''rc'' ||... same '''complex''' type as ''xc''  
|result ''rc'' ||... same '''complex''' type as ''xc''  
|}
|}
:;<code>''rc''=cmul(''xc'',''n'')</code>
:;<code>''rc''='''cmul'''(''xc'',''n'')</code>
:;<code>''rc''=cmul(''n'',''xc'')</code>: Multiply each element of ''xc'' with the real or complex number ''n''.
:;<code>''rc''='''cmul'''(''n'',''xc'')</code>: Multiply each element of ''xc'' with the real or complex number ''n''.
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>i,j</sub> * ''n''</code>
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>i,j</sub> * ''n''</code>
:;<code>''rc''=cmul(''xc'',''yc'')</code>: Multiply ''xc'' and ''yc'' element by element.
:;<code>''rc''='''cmul'''(''xc'',''yc'')</code>: Multiply ''xc'' and ''yc'' element by element.
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>i,j</sub> * ''yc''<sub>i,j</sub></code>
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>i,j</sub> * ''yc''<sub>i,j</sub></code>


====special functions====
====special functions====
:;<code>''rc''<sub>matrix</sub>=ctrn(''xc''<sub>matrix</sub>)</code>: Transposed the complex matrix ''xc''.
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>j,i</sub></code>
:;<code>''rc''<sub>scalar</sub>=cdot(''xc''<sub>vector</sub>,''yc''<sub>vector</sub>)</code>: Compute the dot product (inner product) of the two complex vectors ''xc'' and ''yc'' (both with N elements).  
:;<code>''rc''<sub>scalar</sub>=cdot(''xc''<sub>vector</sub>,''yc''<sub>vector</sub>)</code>: Compute the dot product (inner product) of the two complex vectors ''xc'' and ''yc'' (both with N elements).  
::<code>''rc'' = sum<sub>i=0..N-1</sub> (''xc''<sub>i</sub> * ''yc''<sub>i</sub>) , i=0..N-1</code>
::<code>''rc'' = sum<sub>i=0..N-1</sub> (''xc''<sub>i</sub> * ''yc''<sub>i</sub>) , i=0..N-1</code>
:;<code>''rc''<sub>matrix</sub>=ctrn(''xc''<sub>matrix</sub>)</code>: Transposed the complex matrix ''xc''.
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>j,i</sub></code>
:;<code>''rc''<sub>matrix</sub>=cmulv(''xc''<sub>vector</sub>,''yc''<sub>vector</sub>)</code>: Compute the tensor (or dyadic) product of the two complex vectors ''xc'' and ''yc''.
:;<code>''rc''<sub>matrix</sub>=cmulv(''xc''<sub>vector</sub>,''yc''<sub>vector</sub>)</code>: Compute the tensor (or dyadic) product of the two complex vectors ''xc'' and ''yc''.
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>i</sub> * ''yc''<sub>j</sub></code>
::<code>''rc''<sub>i,j</sub> = ''xc''<sub>i</sub> * ''yc''<sub>j</sub></code>

Revision as of 09:23, 8 April 2011


Because the current version of the STx EVAL command do not support a complex data type, a package of functions is used to implement arithmetic and special handling for complex numbers.

The package consists of the following functions:

cr2p, cp2r, conj, cr2len, cr2phi, cget, [[#real->complex|cset, conj, cmul, ctrn, cdot, cmulv

complex numerical objects

  • A complex number or complex scalar is a numerical object v with 2 rows and 1 column (a vector):
v[0] = re (cartesian: real part) or len (polar: length)
v[1] = im (cartesian: imaginary part) or phi (polar: phase)
  • A complex vector with N elements is a numerical object v with 2N rows and 1 column (a vector):
v[2*i] = rei or leni
v[2*i+1] = imi or phii
  • A complex matrix with MxN elements is a numerical object v with 2N rows and M columns (a matrix):
v[2*i,j] = rei,j or leni,j
v[2*i+1,j] = imi,j or phii,j
  • In general a numerical object containing N x M complex numbers (N>=1, M>=1), consists of 2N rows and M columns, because each complex number uses two cells of a row.
  • If a numerical object containing N x M complex numbers, is converted element-wise to real, the resulting object consists of N x M real numbers.

complex->complex

xc ... any complex type
rc .. ... same complex type as xc
rc=cr2p(xc)
Convert xc from cartesian (real, imaginary) to polar (length, phase) format.
rc=cp2r(xc)
Convert xc from polar (length, phase) to cartesian (real, imaginary) format.
rc=conj(xc)
Conjugate xc; xc must be in cartesian format.

complex->real

xc ... any complex type
r ... same real type as xc
r=cr2len(xc)
Compute length of xc; xc is stored in cartesian format.
r=cr2phi(xc)
Compute phase of xc; xc is stored in cartesian format.
r=cget(xc,0)
Get real part or length of xc (depends on format of xc).
r=cget(xc,1)
Get imaginary part or phase of xc (depends on format of xc).

real->complex

x ... any real type
y ... same type as x
rc ... same complex type as x
rc=cset(x,y)
Combine elements of x (real part or length) and y (imaginary part or phase) to complex numbers.

multiplication (element-wise)

xc ... any complex type (re,im)
yc ... same complex type as 'xc'
n ... real or complex number (re,im)
result rc ... same complex type as xc
rc=cmul(xc,n)
rc=cmul(n,xc)
Multiply each element of xc with the real or complex number n.
rci,j = xci,j * n
rc=cmul(xc,yc)
Multiply xc and yc element by element.
rci,j = xci,j * yci,j

special functions

rcmatrix=ctrn(xcmatrix)
Transposed the complex matrix xc.
rci,j = xcj,i
rcscalar=cdot(xcvector,ycvector)
Compute the dot product (inner product) of the two complex vectors xc and yc (both with N elements).
rc = sumi=0..N-1 (xci * yci) , i=0..N-1
rcmatrix=cmulv(xcvector,ycvector)
Compute the tensor (or dyadic) product of the two complex vectors xc and yc.
rci,j = xci * ycj
rcvector=cmulv(xcvector,ycmatrix)
Compute the product of the complex vector xc (N elements) and the complex matrix yc (N rows, M columns).
rcj = sumi=0..N-1 (xci * yci,j) , j=0..M-1
rcvector=cmulv(xcmatrix,ycvector)
Compute the product of the complex matrix xc (N rows, M columns) and the complex vector yc (M elements).
rci = sumj=0..M-1 (xci,j * ycj) , i=0..N-1
rcmatrix=cmulv(xcmatrix,ycmatrix)
Compute the product of the complex NxM matrix xc and the complex MxL matrix yc. The result is the complex NxL matrix rc.
rci,k = sumj=0..M-1 (xci,j * ycj,i) , i=0..N-1 and k=0..L-1


See also
complex numbers, vvset, vvget, vv, fft, dft,

<function list>

Navigation menu

Personal tools