Programmer Guide/Command Reference/EVAL/modclust: Difference between revisions

From STX Wiki
Jump to navigationJump to search
(Created page with '{{DISPLAYTITLE:{{SUBPAGENAME}}}} Model based agglomerative clustering. A hierarchy and BIC (Bayesian Information Criterion) values are calculated for given data vectors. ---- ;Us…')
 
No edit summary
Line 17: Line 17:
|}
|}
:;<var>min, max</var>:optional minimum (default=2) and maximum (default=N) number of clusters for BIC calculation; 2 <= ''min'' < ''max'' <= N
:;<var>min, max</var>:optional minimum (default=2) and maximum (default=N) number of clusters for BIC calculation; 2 <= ''min'' < ''max'' <= N
:;<var>alpha</var>:optional factor for BIC calculation (default=1); 0 <= alpha <= 100
:;<var>alpha</var>:optional factor for BIC calculation (default=1); 0 <= ''alpha'' <= 100
;Result 1: On return the hierarchy information is stored in ''htable'' (Nx3 matrix) and the BIC values are stored in ''bictable ((''max''-''min''+1)x3 matrix). The return value ''ibest'' is the index of the BIC table entry with the highest BIC value (<code>''ibtest''=imax(''bictable''[*,2]</code>).
;Result 1: On return the hierarchy information is stored in ''htable'' (Nx3 matrix) and the BIC values are stored in ''bictable ((''max''-''min''+1)x3 matrix). The return value ''ibest'' is the index of the BIC table entry with the highest BIC value (<code>''ibtest''=imax(''bictable''[*,2]</code>).
::hierarchy table ''htable'': N rows, 3 columns
::hierarchy table ''htable'': N rows, 3 columns
::{|class="einrahmen"
::{|class="einrahmen"
|column 0 ||index of min. row (from)
|column 0 ||index of min. row (from)
|-
|column 1 ||index of min. column (to)
|column 1 ||index of min. column (to)
|-
|column 2 ||agglomeration cost (distance)
|column 2 ||agglomeration cost (distance)
|}
|}
Line 28: Line 30:
::{|class="einrahmen"
::{|class="einrahmen"
|column 0 ||number of clusters
|column 0 ||number of clusters
|-
|column 1 ||log. likelihood
|column 1 ||log. likelihood
|-
|column 2 ||BIC
|column 2 ||BIC
|}
|}
Line 35: Line 39:
:;<var>htable</var>:cluster hierarchy table (Nx3 matrix, see '''Usage 1''').
:;<var>htable</var>:cluster hierarchy table (Nx3 matrix, see '''Usage 1''').
:;<var>nclust</var>:number of clusters
:;<var>nclust</var>:number of clusters
;Result 2:The created partition table ''p'', which is a vector with N elements containing the group indices. The value ''p''[i] (i=0..N) is the index of the cluster containing the data vector i.
;Result 2:The created partition table ''ptable'', which is a vector with N elements containing the group indices. The value ''ptable''[i] (i=0..N) is the index of the cluster containing the data vector i.
----
----
;Usage 3:<code>modclust(<var>ptable</var>, <var>iclust</var> { <var>x</var>})</code>
;Usage 3:<code>modclust(<var>ptable</var>, <var>iclust</var> { <var>x</var>})</code>

Revision as of 06:30, 21 April 2011

Model based agglomerative clustering. A hierarchy and BIC (Bayesian Information Criterion) values are calculated for given data vectors.


Usage 1
modclust(x, htable, bictable, mflag {, min, max, alpha})
x
data matrix NxM, one data vector with length M per row
htable
hierarchy table (reference used for output)
bictable
BIC table (reference used for output)
mflag
method for distance and BIC calculation
mflag method
0 Single Linkage
1 Complete Linkage (linaer distances)
2 Complete Linkage (log. distances)
min, max
optional minimum (default=2) and maximum (default=N) number of clusters for BIC calculation; 2 <= min < max <= N
alpha
optional factor for BIC calculation (default=1); 0 <= alpha <= 100
Result 1
On return the hierarchy information is stored in htable (Nx3 matrix) and the BIC values are stored in bictable ((max-min+1)x3 matrix). The return value ibest is the index of the BIC table entry with the highest BIC value (ibtest=imax(bictable[*,2]).
hierarchy table htable: N rows, 3 columns
column 0 index of min. row (from)
column 1 index of min. column (to)
column 2 agglomeration cost (distance)
BIC table bictable: max-min+1 rows, 3 columns
column 0 number of clusters
column 1 log. likelihood
column 2 BIC

Usage 2
modclust(htable, nclust)
htable
cluster hierarchy table (Nx3 matrix, see Usage 1).
nclust
number of clusters
Result 2
The created partition table ptable, which is a vector with N elements containing the group indices. The value ptable[i] (i=0..N) is the index of the cluster containing the data vector i.

Usage 3
modclust(ptable, iclust { x})
ptable
partition table (Nx1 matrix, see Usage 2).
nclust
index of cluster to be extracted
x
input data matrix (NxM matrix, see Usage 1)
Result 3
  • if x is supplied: data matrix of all data vectors associated with the cluster iclust
  • otherwise: index vector containing the indices of the data vectors associated with cluster iclust

See also
haclust, em, [../density|density]], svd

<function list>

Navigation menu

Personal tools