Programmer Guide/Command Reference/EVAL/corrfun: Difference between revisions

From STX Wiki
Jump to navigationJump to search
No edit summary
No edit summary
 
Line 25: Line 25:
::{|class="keinrahmen"
::{|class="keinrahmen"
|''cyclic=0''  
|''cyclic=0''  
| ... normal (default); (<code>acf[i]=sum(x[t]*y[(t+i)%ncol(x)], t=0..ncol(x)-1-i)<code>)
| ... normal (default); (<code>acf[i]=sum(x[t]*y[t+i], t=0..ncol(x)-1-i)<code>)
|-
|-
|''cyclic!=0''   
|''cyclic!=0''   

Latest revision as of 09:39, 1 September 2023

Compute the autocorrelation or cross-correlation function.

Usage
corrfun(xvector {, n {, scale {, cyclic}}}) ... autocorrelation of x
corrfun(xvector, yvector {, n {, scale {, cylic}}}) ... cross correlation of x and y
x, y
data vectors
n
the number of lags; 0 < n < ncol(x) (default=ncol(x)/2)
scale
specifies the scaling of the function:
scale=0 ... no scaling (default)
scale=1 ... "biased", each lag i is scaled by the length of x (1/ncol(x))
scale=2 ... "unbiased", each lag i is scaled by the number of correlated elements (1/(ncol(x)-i))
cyclic
normal or cyclic indexing
cyclic=0 ... normal (default); (acf[i]=sum(x[t]*y[t+i], t=0..ncol(x)-1-i))
cyclic!=0 ... cyclic; (acf[i]=sum(x[t]*y[(t+i)%ncol(x)], t=0..ncol(x)-1))
Result
The autocorrelation function of the data vector x or the cross correlation function of the vectors x and y. The result is a scalar (if n=1) or a vector with n elements.
See also
corr

<function list>

Navigation menu

Personal tools