Programmer Guide/Command Reference/EVAL/var: Difference between revisions

From STX Wiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 9: Line 9:
;Usage 2: '''<code>var(''x''<sub>vector</sub>, ''y''<sub>vector</sub>)</code>'''
;Usage 2: '''<code>var(''x''<sub>vector</sub>, ''y''<sub>vector</sub>)</code>'''
;Result 2: The covariance ''v'' of the vectors ''x'' and ''y''.  
;Result 2: The covariance ''v'' of the vectors ''x'' and ''y''.  
:<code>''v'' = sum( (''x''-arv(''x'') ?* (''y''-avr(''y'')) ) / (nrow(''x'')-1)</code>
:<code>''v'' = sum( (''x''-avr(''x'') ?* (''y''-avr(''y'')) ) / (nrow(''x'')-1)</code>
:<code>''v'' = ((''x''-arv(''x'') * (''y''-avr(''y''))) / (nrow(''x'')-1)</code>
:<code>''v'' = ((''x''-avr(''x'') * (''y''-avr(''y''))) / (nrow(''x'')-1)</code>
----
----
;Usage 3: '''<code>var(''x''<sub>matrix</sub>)</code>'''
;Usage 3: '''<code>var(''x''<sub>matrix</sub>)</code>'''
Line 16: Line 16:
:'''<code>var(''x''<sub>matrix</sub>, ''y''<sub>vector</sub>)</code>'''
:'''<code>var(''x''<sub>matrix</sub>, ''y''<sub>vector</sub>)</code>'''
;Result 3: The covariance matrix ''v'' of the column vectors of ''x''.  
;Result 3: The covariance matrix ''v'' of the column vectors of ''x''.  
:<code>''v<sub>i,j</sub>'' = sum<sub>k = 0..nrow(''x'')</sub> ( (x<sub>k,i</sub>-a<sub>i</sub>) * (x<sub>k,j</sub>-a<sub>j</sub>) ) / (nrow(''x'')-1) , with: i,j = 0..ncol(''x'')</code>
:<code>''v''[i,j] = sum<sub>k = 0..nrow(''x'')</sub> ( (x<sub>k,i</sub>-a<sub>i</sub>) * (x<sub>k,j</sub>-a<sub>j</sub>) ) / (nrow(''x'')-1) , with: i,j = 0..ncol(''x'')</code>
:The column averages a<sub>i=0..ncol(''x'')</sub> are computed as follows:
:The column averages a<sub>i=0..ncol(''x'')</sub> are computed as follows:
::{|class="einrahmen"
::{|class="einrahmen"

Revision as of 13:58, 8 April 2011

Compute the variance, covariance or covariance-matrix.


Usage 1
var(xvector)
Result 1
The variance v of vector x.
v = sum( (x-avr(x))?^2 ) / (nrow(x)-1)
v = (x-avr(x))^2 / (nrow(x)-1)

Usage 2
var(xvector, yvector)
Result 2
The covariance v of the vectors x and y.
v = sum( (x-avr(x) ?* (y-avr(y)) ) / (nrow(x)-1)
v = ((x-avr(x) * (y-avr(y))) / (nrow(x)-1)

Usage 3
var(xmatrix)
var(xmatrix, yscalar)
var(xmatrix, yvector)
Result 3
The covariance matrix v of the column vectors of x.
v[i,j] = sumk = 0..nrow(x) ( (xk,i-ai) * (xk,j-aj) ) / (nrow(x)-1) , with: i,j = 0..ncol(x)
The column averages ai=0..ncol(x) are computed as follows:
y not supplied ai = avr(x*,i)
yscalar ai = y
yvector ai = yi
See also
avr, dev, corr

<function list>

Navigation menu

Personal tools