Programmer Guide/Command Reference/EVAL/rpolyreg: Difference between revisions
From STX Wiki
< Programmer Guide | Command Reference | EVAL
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
::<code>''y''<sub>REG</sub>[i] = ''r''[0] + ''r''[1]*''x''[i,0] + .. + ''r''[''m'']*''x''[i,''m''-1]</code> | ::<code>''y''<sub>REG</sub>[i] = ''r''[0] + ''r''[1]*''x''[i,0] + .. + ''r''[''m'']*''x''[i,''m''-1]</code> | ||
---- | ---- | ||
;See also: [[Programmer_Guide/Command_Reference/EVAL/rpoly|rpoly]], [[Programmer_Guide/Command_Reference/EVAL/interp|interp]] | ;See also: [[Programmer_Guide/Command_Reference/EVAL/rpoly|rpoly]], [[Programmer_Guide/Command_Reference/EVAL/interp|interp]], [[Programmer_Guide/Command_Reference/EVAL/rleqs|rleqs, cleqs]] | ||
[[Programmer_Guide/Command_Reference/EVAL#Functions|<function list>]] | [[Programmer_Guide/Command_Reference/EVAL#Functions|<function list>]] |
Revision as of 15:56, 12 April 2011
Linear, multivariant and polynominal regression.
- Usage 1
rpolyreg(xvector, yvector {, m})
:- x
- x data vector
- y
- y data vector:
y[i] = f(x[i] {, x[i]^2, .., x[i]^m})
- m
- the regression (polynom) order; m>0 (default=1)
- Result 1
- Approximate the function y using polynominal regression. The result is the vector r with the m+1 coefficients of the regression polynom.
yREG[i] = r[0] + r[1]*x[i] {+ r[2]*x[i]^2 + .. + r[m]*x[i]^m}
- Usage 2
rpolyreg(xmatrix, yvector {, m})
:- x
- x data matrix, the regression order is the number of independent variables
m=ncol(x)
- y
- y data vector:
y[i] = f(x[i,*])
- Result 2
- Approximate the function y using multivariant linear regression. The result is the vector r with the m+1 regression coefficients.
yREG[i] = r[0] + r[1]*x[i,0] + .. + r[m]*x[i,m-1]
- See also
- rpoly, interp, rleqs, cleqs