Programmer Guide/Command Reference/EVAL/pztf: Difference between revisions
From STX Wiki
< Programmer Guide | Command Reference | EVAL
Jump to navigationJump to search
(Created page with "{{TODO}}") |
No edit summary |
||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:{{SUBPAGENAME}}}} | |||
{{TODO}} | {{TODO}} | ||
Compute minimum phase envelope (for test purposes only) | |||
;Usage:<code>Amip := eval pztf(Ac, nn, nd, 0)</code> | |||
:<code>Amip := eval pztf(Ae, nn, nd, 0)</code> | |||
;Result:log. minimum phase amplitude response in dB (Amip[*,0]) | |||
Compute polyinomial coefficients of numerator and denominator of the p/z transfer function H(z)=N(z)/D(z) | |||
;Usage:<code>ND := eval pztf(Ac, nn, nd, 1 | 2) 1=wlls, 2=nd</code> | |||
:<code>ND := eval pztf(Ae, nn, nd, 1 | 2) 1=wlls, 2=nd</code> | |||
;Result:numerator and denominator coefficients: | |||
:ND[0,0]=nn, ND[1..nn,0]=an[0..nn-1], | |||
:ND[0,1]=nd, ND[1..nd,1]=ad[0..nd-1] | |||
Compute amplitude response |H(z)| in dB | |||
;Usage:<code>H := eval pztf(ND, nh)</code> | |||
;Result:amplitude response in dB (H[*,0]) | |||
Compute poles and zeros | |||
;Usage:ZP := eval pztf(ND) | |||
;Result:zeros and poles | |||
:ZP[0,0]=nz, ZP[0,1..nz]=rz[0..nz-1], ZP[0,nz+1..nz+np]=rp[0..np-1] | |||
:ZP[1,0]=np, ZP[1,1..nz]=fz[0..nz-1], ZP[1,nz+1..nz+np]=fp[0..np-1] | |||
;Notes | |||
:1) relative frequencies fz/fp are computed as: fx[i] = (arg(x[i]) / pi | |||
:1) zeros and poles are sorted by increasing rel. frequency fz/fp | |||
:2) if fz/fp[i]=0 -> real pole/zero on the right side | |||
:3) if fz/fp[i]=1 -> real pole/zero on the left side | |||
:4) if 0<fz/fp[i]<1 conjugate complex pole/zero | |||
:;Ac:complex minimum phase envelope (Ac[*,0] = re, Ac[*,1] = im) | |||
:;Ae:log. envelope in dB (Ae[*,0]) | |||
:;nn:order of numerator | |||
:;nd:order of denominator | |||
:;nh:number of H frequency bins | |||
[[../#Functions|<function list>]] |
Latest revision as of 13:02, 8 October 2015
This STx-related article may be outdated.
Compute minimum phase envelope (for test purposes only)
- Usage
Amip := eval pztf(Ac, nn, nd, 0)
Amip := eval pztf(Ae, nn, nd, 0)
- Result
- log. minimum phase amplitude response in dB (Amip[*,0])
Compute polyinomial coefficients of numerator and denominator of the p/z transfer function H(z)=N(z)/D(z)
- Usage
ND := eval pztf(Ac, nn, nd, 1 | 2) 1=wlls, 2=nd
ND := eval pztf(Ae, nn, nd, 1 | 2) 1=wlls, 2=nd
- Result
- numerator and denominator coefficients:
- ND[0,0]=nn, ND[1..nn,0]=an[0..nn-1],
- ND[0,1]=nd, ND[1..nd,1]=ad[0..nd-1]
Compute amplitude response |H(z)| in dB
- Usage
H := eval pztf(ND, nh)
- Result
- amplitude response in dB (H[*,0])
Compute poles and zeros
- Usage
- ZP := eval pztf(ND)
- Result
- zeros and poles
- ZP[0,0]=nz, ZP[0,1..nz]=rz[0..nz-1], ZP[0,nz+1..nz+np]=rp[0..np-1]
- ZP[1,0]=np, ZP[1,1..nz]=fz[0..nz-1], ZP[1,nz+1..nz+np]=fp[0..np-1]
- Notes
- 1) relative frequencies fz/fp are computed as: fx[i] = (arg(x[i]) / pi
- 1) zeros and poles are sorted by increasing rel. frequency fz/fp
- 2) if fz/fp[i]=0 -> real pole/zero on the right side
- 3) if fz/fp[i]=1 -> real pole/zero on the left side
- 4) if 0<fz/fp[i]<1 conjugate complex pole/zero
- Ac
- complex minimum phase envelope (Ac[*,0] = re, Ac[*,1] = im)
- Ae
- log. envelope in dB (Ae[*,0])
- nn
- order of numerator
- nd
- order of denominator
- nh
- number of H frequency bins