EXSTAT
Calculation of statistical moments.
[SPU EXSTAT X PX NORM OUT M1 M2 M3 M4 N]
input | description | data type | value type | default value |
---|---|---|---|---|
X | data vector | number, vector | variable | 0,1,..
|
PX | probability vector | number, vector | variable | 1, 1, ...
|
NORM | normalization flag | number (int.), string | constant | 0 (= NO )
|
output | description | data type | value type | comment |
M1 | 1st moment (mean) | number | variable | |
M2 | 2nd moment (variance or spread) | number | variable | |
M2 | 3rd moment (skewness) | number | variable | |
M4 | 4th moment (kurtosis) | number | variable | |
N | number of data samples | number | constant |
Note:
- At least one of the data vectors X and PX must be supplied!
- The number of data points N is set to the length of the vector X or PX.
- If X is a not connected, the x-data are initialized with xi = i.
- If X is a number, the x-data are initialized with xi = X+i.
- If PX is not a vector, the probabilies pxi are set to 1.
- Description
μ = ∑ i = 0 N − 1 x i p x i ∑ i = 0 N − 1 p x i σ 2 = ∑ i = 0 N − 1 ( x i − μ ) 2 p x i ∑ i = 0 N − 1 p x i K = ∑ i = 0 N − 1 ( x i − μ ) 3 p x i ∑ i = 0 N − 1 p x i S = ∑ i = 0 N − 1 ( x i − μ ) 4 p x i ∑ i = 0 N − 1 p x i {\displaystyle {\begin{matrix}\mu ={\frac {\sum _{i=0}^{N-1}x_{i}px_{i}}{\sum _{i=0}^{N-1}px_{i}}}&\sigma ^{2}={\frac {\sum _{i=0}^{N-1}(x_{i}-\mu )^{2}px_{i}}{\sum _{i=0}^{N-1}px_{i}}}\\K={\frac {\sum _{i=0}^{N-1}(x_{i}-\mu )^{3}px_{i}}{\sum _{i=0}^{N-1}px_{i}}}&S={\frac {\sum _{i=0}^{N-1}(x_{i}-\mu )^{4}px_{i}}{\sum _{i=0}^{N-1}px_{i}}}\end{matrix}}}
output | NORM=0 |
NORM=1
|
---|---|---|
M1 | μ {\displaystyle \mu \!} | μ {\displaystyle \mu \!} |
M2 | σ 2 {\displaystyle \sigma ^{2}\!} | σ 2 μ {\displaystyle {\frac {\sigma ^{2}}{\mu }}} |
- See also
<SP-atoms>