modclust
From STX Wiki
< Programmer Guide | Command Reference | EVAL
Jump to navigationJump to search
Model based agglomerative clustering. A hierarchy and BIC (Bayesian Information Criterion) values are calculated for given data vectors.
- Usage 1
modclust(x, htable, bictable, mflag {, min, max, alpha})
- x
- data matrix NxM, one data vector with length M per row
- htable
- hierarchy table (reference used for output)
- bictable
- BIC table (reference used for output)
- mflag
- method for distance and BIC calculation
mflag method 0 Single Linkage 1 Complete Linkage (linaer distances) 2 Complete Linkage (log. distances)
- min, max
- optional minimum (default=2) and maximum (default=N) number of clusters for BIC calculation; 2 <= min < max <= N
- alpha
- optional factor for BIC calculation (default=1); 0 <= alpha <= 100
- Result 1
- On return the hierarchy information is stored in htable (Nx3 matrix) and the BIC values are stored in bictable ((max-min+1)x3 matrix). The return value ibest is the index of the BIC table entry with the highest BIC value (
ibtest=imax(bictable[*,2]
).- hierarchy table htable: N rows, 3 columns
column 0 index of min. row (from) column 1 index of min. column (to) column 2 agglomeration cost (distance)
- BIC table bictable: max-min+1 rows, 3 columns
column 0 number of clusters column 1 log. likelihood column 2 BIC
- Usage 2
modclust(htable, nclust)
- htable
- cluster hierarchy table (Nx3 matrix, see Usage 1).
- nclust
- number of clusters
- Result 2
- The created partition table p, which is a vector with N elements containing the group indices. The value p[i] (i=0..N) is the index of the cluster containing the data vector i.
- Usage 3
modclust(ptable, iclust { x})
- ptable
- partition table (Nx1 matrix, see Usage 2).
- nclust
- index of cluster to be extracted
- x
- input data matrix (NxM matrix, see Usage 1)
- Result 3
-
- if x is supplied: data matrix of all data vectors associated with the cluster iclust
- otherwise: index vector containing the indices of the data vectors associated with cluster iclust